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Introduction: In radionuclide imaging, object scatter is one of the major factors leading to image quality 
degradation. Therefore, the correction of scattered photons might have a great impact on improving the 
image quality. Regarding this, the present study aimed to determine the main and sub-energy windows for 
triple energy window (TEW) scatter correction method using the SIMIND Monte Carlo simulation code in 
Gadolinium-159 (Gd-159) imaging.  
Material and Methods: The energy window was set for various main energy window widths (i.e., 10%, 
15%, and 20%) and sub-energy window widths (i.e., 3 and 6 keV). Siemens Medical System Symbia fitted 
with a high-energy collimator was used with Gd-159 point source positioned at seven locations inside the 
cylindrical water phantom. A comparison was made between the true primary to total ratio (calculated by 
SIMIND) and the primary to total ratio estimated using TEW method. 
Results: The findings of this study showed that 20% of the main energy windows with 3 and 6 keV sub-
energy windows were optimal for the implementation of the TEW method in Gd-159. 
Conclusion: According to the results, the optimal energy windows for Gd-159 scintigraphy were the sub-
energy windows of 3 and 6 keV. These findings could be helpful in the quantification of Gd-159 imaging.   
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Introduction 
In gamma camera imaging, the detection of 

Compton scattered photons within the photo-peak 
energy window depends on various factors, such as 
source distribution, object size, energy window 
settings, and source energies [1-3]. On the other hand, 
the removal of scattered photons is important in 
improving the quality and quantity of image [4] 
because only primary photons provide correct spatial 
information regarding radioisotope distribution [5].  

Diverse methods have been proposed to eliminate 
scattered photons from planar or reconstructed 
images, namely dual-energy window (DEW) [6], 
triple-energy window (TEW) [7], photopeak window 
[8], downscatter correction [8], and combined scatter 
correction [8]. Some other methods for this purpose 
include deconvolution [9], energy-weighted 
acquisition [10], iterative peak-erosion algorithm, 
spectral-fitting algorithm [11], factor analysis [12], 
inverse Monte Carlo reconstruction algorithm [13], 
and asymmetric photopeak window (offset high) [14].  

The Gadolinium-159 (Gd-159) isotope can be used 
for nuclear medicine due to its half-life (18.5 h), in 
addition to beta (1001 keV) and gamma (main energy 
of 363.54 keV) emissions [15, 16]. In order to enhance 
the activity quantification and image quality for Gd-
159 using the gamma emission of 365.54 keV, it is 
important to correct the scatter events caused by the 
photons scattered in the object. These photons 
produce errors regarding the decay location.  

This study aimed to estimate the contribution of 
scattered photons inside the main energy window in 
the TEW method [17-26], which is known as a simple 
and practical technique. In the TEW method, two sub-
windows were placed on both sides of the main 
photo-peak window. The primary count of photons in 
the photo-peak was calculated using the counts 
acquired from the two adjacent narrow windows.  

The current study involved the comparison of the 
true primary to total ratio and primary to total ratio 
(estimated by TEW) using the SIMIND Monte Carlo 
simulation code [27]. The results could be beneficial 
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for determining the main and sub-energy windows in 
Gd-159 SPECT imaging.  

 
 
 

Materials and Methods 
The SIMIND Monte Carlo code (version 6.1) was 

used to simulate the Siemens Symbia Medical gamma 
camera with high-energy (HE) collimators that have 
parallel holes (Table 1). The dimensions of the detector 
surface were 59.1×44.5 and had a NaI (Tl) crystal 
thickness of 2.54 cm. The detector was characterized by 
an intrinsic spatial resolution of 0.34 cm and energy 
resolution of 8.8% at 140 keV. The photons emitted 
toward the camera had an acceptance angle of 45°. The 
pixel size in the simulated planar source images was 
0.34 cm with a matrix size of 128×128 cm. The binary 
images were imported to the ImageJ software developed 
by SIMIND. 
 

Table 1. Characteristics of the Siemens Symbia medical system 
collimator  

Low energy High-energy (HE) collimator 

Hole geometric Hexagonal 
Hole length (cm) 5.97 

Septal thickness (cm) 0.2 
Hole diameter (cm) 0.4 

 

We simulated a cylindrical water phantom (16 cm in 
diameter and 32 cm in height) positioned at a distance of 
15 cm from the detector surface. Point sources with a 
diameter of 1 mm, filled with Gd-159 (3,7 MBq), were 
simulated at seven locations, including the center of the 
cylinder phantom, as well as offsets at ±7 cm of X, Y, 
and Z directions relative to the center. Figure 1 depicts 
the geometry of the SPECT system and phantom used in 
this study. 

The main energy window was determined at the 
widths of 10%, 15%, and 20%, while centered at 363 
keV and the sub-energy window widths of 3 and 6 keV. 
The true primary to total ratio (P/T) was compared with 
the primary to total ratio estimated using TEW scatter-
correction method with triangular approximation.   

 
Figure 1. Geometry of the single photon emission computed 
tomography system and phantom  
 

The count of primary photons for photopeak was 
estimated with the main window centered at the 
photopeak energy window and the two sub-windows on 
the sides of the main window. The following equation 
was used to estimate the scatter counts: 

 

𝐶𝑠𝑐𝑎 = (
𝐶𝑙𝑒𝑓𝑡

𝑊𝑠
+

𝐶𝑟𝑖𝑔ℎ𝑡

𝑊𝑠
) ×

𝑊𝑚

2
                                   (1) 

 𝐶𝑝 = 𝐶𝑡𝑜𝑡 − 𝐶𝑠𝑐𝑎                                                    (2) 

 
Where, Cleft denotes the counts in left lower sub-

energy window, Cright represents the counts in right 
lower sub-energy window, Ws is the width of sub-energy 
window, Wm refers to the width of main window, Ctot 
signifies the counts in main window, Csca is the scatter 
counts, and Cp represents the primary counts.   

In addition, the primary to total ratio was calculated 
as: 

𝑃/𝑇 =
 𝐶𝑝

𝐶𝑡𝑜𝑡
× 100                                                   (3) 

 

Results 
Tables 2 and 3 show the difference between the true 

primary to total ratio (%) and the estimated primary to 

total ratio at each position for 3 and 6 keV sub-windows. 

The primary to total ratio of photons depended on the 

source location and energy windows 

 

 

Table 2. Difference between the true primary to total ratio (%) and primary to total ratio estimated by triple-energy window scatter correction 

method for sub-window 3  
  

Subwin (3 keV) 
10% 15% 20% 10% 15% 20% 

 
Source 
position 

P/T 
P/T true 

P/T 

TEW 
P/T true 

P/T 

TEW 
P/T true 

Difference 

(%) 

Difference 

(%) 

Difference 

(%) 
(x, y, z) TEW 

(0, 0, 0) 88.05 85.4 88.4 80.2 82.17 75.36 2.65 8.2 6.82 

(-7, 0, 0) 90.34 84.2 84.43 79.3 80.25 74.11 6.14 5.13 6.14 

(7, 0, 0) 89.56 85.7 88.71 80.4 83.38 75.53 3.86 8.31 7.85 

(0, -7, 0) 94.13 92.5 90.02 89.2 88.22 86.32 1.63 0.82 1.9 

(0, 7, 0) 92.55 92.1 90.28 88.6 87.78 85.6 0.45 1.68 2.18 

(0, 0, -7) 83.73 76.5 82.35 69.1 76.66 63.27 7.23 13.25 13.39 

(0, 0, 7) 93.79 97.4 91.88 96.5 92.57 95.19 -3.61 -4.62 -2.62 
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Table 3.  Difference between the true primary to total ratio (%) and primary to total ratio estimated by triple-energy window scatter correction 

method for sub-window 6 
 

Subwin 
10% 15% 20% 10% 15% 20% 

(6 keV) 

Source 
position 

(x, y, z) 

P/T 

TEW 
P/T true 

P/T 

TEW 
P/T true 

P/T 

TEW 
P/T true 

Difference 

(%) 

Difference 

(%) 

Difference 

(%) 

(0, 0, 0) 75.85 85.4 75.6 80.2 66.25 75.4 -9.55 -4.6 -9.15 
(-7, 0, 0) 81.16 84.2 68.07 79.3 65.18 74.1 -3.04 -11.23 -8.92 

(7, 0, 0) 77.57 85.7 76.12 80.4 66.32 75.5 -8.13 -4.28 -9.18 

(0, -7, 0) 86.67 92.5 80.99 89.2 78.13 86.3 -5.83 -8.21 -8.17 
(0, 7, 0) 84.63 92.1 81.65 88.6 76.03 85.6 -7.47 -6.95 -9.57 

(0, 0, -7) 67.85 76.5 63.82 69.1 55.26 63.3 -8.66 -5.28 -8.04 

(0, 0, 7) 89.48 97.4 85.61 96.5 86.94 95.2 -7.92 -10.89 -8.26 

    
Table 4. Gadolinium-159 point sources obtained for the sub-windows of 3 keV and a main energy window of 10% 

  

Source position (x, y, z) True primary images Primary images (TEW) Total images 

 

(0, 0, 0) 

  
 
 

 

 
 

 

 

(-7, 0, 0) 

   

(7, 0, 0) 

   

(0, -7, 0) 

   

(0, 7, 0) 

   

(0, 0, -7) 

   

(0, 0, 7) 
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Discussion 
Gadolinium-159 as a beta emitter is an efficient 

radionuclide for cancer therapy [28-31]. Therapeutic 
management requires quantitative imaging, which is 
difficult to perform due to several factors, such as object 
scatter. Previous studies on the proprieties of therapeutic 
and scintigraphic images with Gd-159 demonstrated that 
the images obtained with a high-energy general-purpose 
collimator possessed low quality [16, 29].  

The scatter correction methods are useful to improve 
the image quality and activity quantification. Noori-Asl 
et al. [24] evaluated and compared six scatter correction 
methods for SPECT Tc-99m spectrum using SIMIND 
Monte Carlo simulation. They introduced TEW method, 
considering triangular approximation, as the most proper 
correction procedure.  

However, there is no study regarding the fraction of 
Gd-159 scattered photons as the function of optimal 
main and sub-energy windows for the implementation of 
the TEW method.  Selection of the optimal main and 
sub-energy windows is very important and can lead to 
suitable image quality. Therefore, the selection of the 
main and sub-energy windows was different in Gd-159 
SPECT imaging. It is important to choose proper energy 
windows for avoiding the scattered photons that degrade 
quantification and image quality. As a result, the chosen 
main and sub-energy windows impose a great effect on 
scatter correction for Gd-159 SPECT imaging. 

In the current study, it was shown that the detected 
scattered photons within photo-peak energy window 
highly depended on the size of source distribution and 
energy window parameters. The use of SIMIND Monte 
Carlo simulation code facilitates tracking and recording 
the life history of the individual photon originating from 
the source. This allows the accurate calculation of the 
scattered photon fractions in different energy windows. 
The TEW scatter correction method was easily executed 
in the clinical trial.   

 

Conclusion 
The present study evaluated the TEW scatter 

correction method for Gd-159 imaging with SIMIND 
Monte Carlo simulation code. The obtained results 
showed that both 3 and 6 keV sub-windows with 10% 
main-energy window were optimum for implementing 
the TEW method. These findings might be helpful in the 
activity quantification of Gd-159. Moreover, the 
capacity of quantitative SPECT imaging was shown 
using the TEW scatter correction method. The results of 
this study shed light on Gd-159 radionuclide as a new 
privileged radionuclide in the treatment and diagnosis of 
cancer.  
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