
 

 

 

 

 

 
  
 

  

Iranian Journal of Medical Physics 
 

ijmp.mums.ac.ir 

Assessment of Different Training Methods in an Artificial Neural 

Network to Calculate 2D Dose Distribution in Radiotherapy  

Mahdi Saeedi-Moghadam1, 3, Kamal Hadad 3, Banafsheh Zeinali-Rafsanjani 1,2*, Reza Jalli1 

1. Medical Imaging Research Center, Shiraz University Of Medical Sciences, Shiraz, Iran  

2. Nuclear Medicine and Molecular Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran 

3.  Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran 

A R T I C L E  I N F O  A B S T R A C T 

Article type: 
Original Article 

  

Introduction: Treatment planning is the most important part of treatment. One of the important entries into 
treatment planning systems is the beam dose distribution data which maybe typically measured or calculated 
in a long time. This study aimed at shortening the time of dose calculations using artificial neural network 
(ANN) and finding the best method of training the ANN using Monte Carlo-N-particle (MCNP5) modeling.  
Material and Methods: Back-propagation learning algorithm was applied to design the neural network. The 
ANN was trained by MCNP5 calculations, and different kinds of methods were tested to determine the best 
method for training. In order to evaluate the accuracy of the ANN, the beam profiles and percentage depth 
dose (PDD) in the field size of 15×15 cm2 were anticipated by ANN using various training methods. 
Eventually, the results were compared with those obtained from the MCNP5 code. 
Results: There were good agreements between the results of comparing MCNP5 calculations with 
experimental measurements. Among the different training methods, Trainbfg had the least error for 
calculation of PDD and beam profile. 
Conclusion: The best training method was found to be Trainbfg, and the results revealed the sufficient 
accuracy of the modeled ANN. 
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Introduction 
An artificial neural network (ANN) is a MATLAB 

calculating model that contains a group of 
interconnected neurons. As it is obvious from the 
name, this network has been inspired by the animal’s 
central nervous system. The function of this network 
is similar to that of the brain. Some entries should be 
inserted to the network which using the activation 
function transfer to the other neurons and calculate 
the result. The main components of a neural network 
are entries, weights, adding function, activation 
function, and output [1, 2]. This model is used to solve 
a wide variety of problems in different fields, such as 
engineering, mathematics, medicine, business, 
economics, aviation, and robotic [3-8].  

There are different kinds of neural network 
models, including feed-forward networks, feedback 
networks, network layers, and perceptrons. Just like a 
brain that learns from experience, neural network 
requires sufficient representative examples which 
enable it to generalize to new cases. Therefore, in the 
first step, the network should be trained by sufficient 
information. This network can solve the problems in a 
pretty short time; accordingly, it is mostly used in 
time-consuming computations [9].  

In this study, ANN was utilized to help the dose 
calculations in radiotherapy treatment planning. 
Nowadays, treatment planning is the most important 
part of the treatment. Many kinds of treatment 
planning systems have been developed to plan the 
treatment in the best manner to deliver the prescribed 
dose to the target and spare the organ at risk. One of 
the important entries to these systems besides the 
machine and patient data is the beam dose 
distribution data, such as central axis percentage 
depth dose and off-axis ratios [10]. These data can be 
experimentally measured by a phantom and a 
dosimetric device, such as a diode or can be calculated 
by a calculation code, including Monte Carlo codes.  

These methods are quite precise; however, they 
are very time consuming as well. For instance, the 
Monte Carlo N-Particle Transport (MCNP) code may 
require hours to calculate the dose distribution 
precisely in a simple homogeneous phantom which is 
completely irrational in clinical use. An alternative 
method is using artificial neural network to shorten 
the dose calculation time.  

In 2004, Blake used ANN to calculate the dose 
distribution of a Varian 2100c radiotherapy machine. 
The experimentally measured percentage depth dose 
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(PDD) of 6 and 10 MeV x-ray was used to train the 
network [11]. In 2005, Monte Carlo calculated data of 
a cobalt machine was utilized by Mathieu et al. to train 
the network [12]. In the same line, Vasseur et al. 
(2008) planned a network for inhomogeneous water 
phantom and TA6V4. In their study, the cobalt source 
and an inhomogeneous phantom were modeled in 
DOSXYZ nrc code, and the results of this simulation 
were used to train the network [13]. Furthermore, 
Kalantzis et al. (2011) employed the ANN to 
reconstruct the dose map in intensity-modulated 
radiotherapy (IMRT). In their study, the ANN was 
trained with fluence and dose maps of IMRT, which 
was obtained by the electronic portal imaging device 
[14]. In the same year, Hadad et al. used the MCNP 
dose calculation information on Varian 2100c 
radiotherapy machine for training the network [15]. 
This network was utilized to fasten the dose 
calculation of a homogeneous phantom. 

To the best of our knowledge, there has been no 
study utilizing the MCNP5 code to model an 
inhomogeneous phantom to train the ANN to calculate 
the 2D dose distributions of 6 Mev x-rays. Therefore, 
this study aimed at assessing the most suitable 
method for training the ANN using MCNP5 code to 
calculate the 2D dose distribution of 6 MeV x-rays in 
an inhomogeneous phantom. 

 

Materials and Methods 
A simulated linear accelerator (Linac-Varian 2100c) 

was used to calculate the information which should be 
applied to train the neural network model. The Linac 
was simulated regarding all details, such as primary and 
secondary collimators, target, exit window, and 
flattening filter [15, 16]. Figure 1 demonstrates the 
MCNP5 scheme of the Linac head. 

 

 
 
Figure 1. A plot of the simulated Linac head 

 

The accuracy of the Monte Carlo model was verified 
by comparing the results of PDD calculations with those 
of the experimental measurements of the 6 MeV Linac 
in a homogeneous phantom. The experimental 
measurements of PDD were done using gafchromic film 
and a homogeneous phantom [15]. 

In this study, an inhomogeneous phantom was 
modeled using MCNP5. The MCNP codes are wildly 
used for radiation protection purposes or simulating the 
medical situation to evaluate the radiation dose [17-25]. 
The phantom is a 30×30×30 cm3 water phantom and a 
cork layer with the dimension of 30×30×1 cm3 in the 
depth of 5 to 6 cm of water (Figure 2).  

 

 
 
Figure 2. A cross-section of the modeled inhomogeneous phantom 

 
To verify the model in an inhomogeneous phantom, 

the experimental measurements of PDD was performed 
in an inhomogeneous phantom with the same features of 
a simulated phantom (Figure 2). Subsequently, the 
results of the calculations and measurements were 
compared with each other. The PDD measurements and 
calculations were performed in 2 field sizes of 10×10 
and 18×18 cm2. 

 
Calculations 

After the verification of the model, ANN was trained 
by the model calculations. The PDD and beam profiles 
of the model were measured in the depth of 5.5 cm in 
the middle of the cork inhomogeneity in 7 field sizes 
(8×8 to 20×20 cm2 with the steps of 2 cm). The output 
results of MCNP5, PDD, and beam profile calculations 
in the mentioned field sizes were used to train the 
network. Moreover, Multilayer Perceptron Network 
with a backpropagation learning algorithm was 
employed to design the neural network. The entries on 
the network were dimension, dose distribution, field size, 
and density. Field sizes of 12×12 and 18×18 cm2 were 
used as test patterns and the field size of 15×15 cm2 was 
utilized to assess the accuracy of ANN function. Figure 
3 illustrates both MCNP and ANN steps. 
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Figure 3. Different steps in this study including the experimental measurement of PDD and beam profile in two field sizes, MCNP calculation of PDD and beam profile, validation of  Monte Carlo 
simulation, application of MCNP output as ANN inputs, Neural network training,  and finally finding the best training method 

  

Comparing the result of dosimetry with that of MCNP in the field sizes 

of 10*10 cm2 and 20*20 cm2, MCNP was validated. 

Comparing the results of PDD and beam profile obtained from neural network with that of MCNP 

outputs in the field size of 15*15 cm2, the best training method was chosen. 
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After training the network and with regard to the 
train and network output, the number of layers and 
neurons increased properly to decrease the error to a 
rational level. Finally, the best design was obtained with 
4 layers, including 3 hidden layers and 1 output layer 
with neuron numbers of 35, 15, 8, and 1, respectively. 
Due to the nonlinearity problem, hyperbolic tangent 
function (tanh) was used as an activation function of 
latent layers; in addition, because of the unlimited 
output, a pure linear function (purlim) was employed as 
the activation function of the output layer. 
 
Table 1. Different types of algorithms for training the ANN 
 

     Description MATLAB command 

BFGS Quasi-Newton backpropagation Bfg 

Conjugate gradient backpropagation with  
Fletcher-Reeves restarts  

Cgf 

Gradient-descent backpropagation Gd 

 

The suitable training rate was selected considering 
the convergence and speed of the network training. 

Different kinds of methods were tested in order to 
find the best and optimized method for training the 
model (Table 1). 

 

Results 
Figure 4 illustrates the results of the PDD 

experimental measurements and calculations for 

verifying the MCNP code in an inhomogeneous 

phantom in two field sizes of 10×10 and 18×18 cm2 and 

SSD of 100 cm.  

Different types of training methods (Table 1) were 

used in order to find the best method to train the 

network. The results of PDD from different training 

methods in an inhomogeneous phantom and field size 

of 15×15 cm2 are illustrated below (Fig 5-7).  

Table 2 summarizes the results of the percentage 

difference between ANN and MCNP5 outputs. 

 

 
Figure 4.PDD of 6 MeV x-rays, A) Field size of 10×10 cm2, B) Field size of 18×18 cm2, SSD of 100 cm in an inhomogeneous phantom 

 

   
 

Figure 5. ANN with bfg training algorithm and MCNP5 results of 6 MeV x-rays PDD and beam profile, the field size of 15×15 cm2 and SSD of 100 cm 
 

 
Figure 6. ANN with cgf training algorithm and MCNP5 results of 6 MeV x-rays PDD and beam profile, the field size of 15×15 cm2 and SSD of 100 cm 
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Figure 7. ANN with gd training algorithm and MCNP5 results of 6 MeV x-rays PDD and beam profile, the field size of 15×15 cm2 and SSD of 100 cm  

 
Table 2. Results of the percentage difference between ANN and MCNP5 for PDD and beam profile in the field size of 15×15 cm2 
 

Training algorithm Error of inhomogeneous 

region for PDD (%) 

Error of homogeneous 

for PDD(%) 

Error of beam profile 

(%)(summit) 

Error of beam profile 

(%)(tail) 

bfg 0.86 0.6 4.50 1.10 

cgf 1.58 1.58 5.14 1.15 

gd 4.96 2.37 8.89 2.15 

 

Discussion 
The previous studies have shown that ANN could 

successfully estimate the radiation dose in unknown 
points [26]. This ability can be very helpful in 
radiotherapy treatment planning where it is important to 
know the radiation dose distribution in different filed 
sizes.  

Although a good knowledge of therapy beam dose 
distribution in all field sizes can help in efficient 
treatment planning, it requires special devices to 
measure the dose which can be very time-consuming. 
Modeling is one of the methods which do not need any 
devices to evaluate the dose distribution; however, 
accurate modeling is very time consuming and is not 
suitable for daily clinical use. 

Recently, ANN has been shown to be very fast and 
accurate to replicate the results of complicated modeling. 
Therefore, the most accurate methodology was used to 
model and calculate dosimetry parameters (i.e., MCNP5 
Monte Carlo Coder). Subsequently, ANN was employed 
to create a tool for fast and accurate dose evaluation. 
Moreover, our method was implemented to calculate the 
2D dose distribution of 6 MeV x-rays in an 
inhomogeneous phantom.  

It should be noted that some of the previous studies 
used homogenous phantom which might not be 
attributed to the inhomogeneous regions [11]. Some of 
the other studies that employed inhomogeneous 
phantoms could not provide a good agreement between 
the output of ANN and experimental or calculation 
results in deep regions of the phantom [13]. This study 
introduced a training method that helped to provide 
good results of dose distribution even in a deep area of 
phantom showing better accuracy in dose calculation.    

According to Figure 3, a good agreement is seen 
between the results of MCNP5 and those of the 
experimental measurements. The maximum error for the 
field sizes of 10×10 cm2 and 18×18 cm2 were 2.8% and 
1.8%, respectively. According to the International 
Atomic Energy Agency and American Association of 
Physicists in Medicine, the acceptable error in the 

central axis of an inhomogeneous phantom between 
measurements and calculations should be less than 3% 
and 5%, respectively [26- 28]. Since the errors between 
measurements and calculations were less than 3% in all 
points, the accuracy of the model was verified in this 
study. A notch was observed in both curves at 5 cm 
where the cork inhomogeneity existed. This is due to the 
changes in the density of the phantom material in the 
inhomogeneity interface region.  

According to figures 4-6 and table 2, it is clear that 
the Trainbfg training method has the least error of 0.6% 
and 0.86% in the homogeneous and inhomogeneous 
region, respectively. Accordingly, it can be regarded as 
the most suitable method for PDD calculations. After 
Trainbfg, Traincgf training method with the percentage 
error of almost 1.58% in inhomogeneous and 
homogeneous region can be performed well in the 
second place. However, Traingd was the worst method 
to train the ANN with a percentage error of 4.96%.   

Table 2 shows the percentage differences in the 
summit and tail for Trainbfg training method which 
were 4.50 and 1.10, respectively. As can be seen in 
figures 4-6 and table 2, this training method also obtains 
the least error for beam profile calculations and it is the 
most suitable method for training ANN. The second 
suitable training method is Traincgf with the percentage 
errors of 5.14, 1.15% in summit and tail, respectively. 
However, the worst training method was Traingd with 
the percentage errors of 8.89 and 2.15% in the summit 
and tail respectively. 

 

Conclusion 
This study revealed that Trainbfg was the best 

training method with the percentage error of 0.6% in 
PDD calculations and percentage errors of 4.5 and 1.1% 
in summit and tail regions in beam profile calculations. 
Therefore, this training technique can accurately 
calculate the PDD and beam profile. The calculated dose 
distribution in the field size of 15×15 cm2 using ANN 
model was accurate enough; accordingly, it is reliable 
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for 2D dose calculations in order to decrease the 
calculation time in clinical applications.  
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