Development of In-House Head Computed Tomography Dose Index Phantoms Based on Polyester-Resin Materials

Document Type : Original Paper

Authors

1 Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia.

2 Departement of Chemical Engineering, Riau University, Indonesia

Abstract

Introduction: Computed tomography dose index (CTDI) phantoms are used to optimize CT examinations in terms of image quality and the received dose. In this study, we aimed to develop cost-effective head CTDI phantoms from polyester-resin (PESR) materials as alternative phantoms.
Material and Methods: The PESR was mixed with methyl ethyl ketone peroxide (MEKP) as a catalyst. The ratios of MEKP to PESR were 1:150, 1:200, 1:250, and 1:300, respectively. The phantom dimensions were designed similar to the standard CTDI phantom, i.e., length of 15 cm and diameter of 16 cm with five holes (diameter, 1.31 cm). The CTDI measurements using the PESR-MEKP phantoms were compared with the CTDI measurements using the standard polymethyl methacrylate (PMMA) phantom.
Results: The results showed that the CTDI valuesof the PESR-MEKP phantoms were slightly higher (up to 6%) than the standard PMMA phantom. It was found that the CTDI measured by the PESR-MEKP phantom with a ratio of 1:300 had the least significant difference from the standard PMMA phantom; also, at this ratio, the phantom was the most homogeneous.
Conclusion: The head CTDI phantoms based on PESR-MEKP materials were developed and evaluated in this study. It was found that the PR-MEKP phantom with a MEKP-to-PESR ratio of 1:300 was insignificantly different from the standard PMMA phantom. Also, the phantom was constructed easily at a more reasonable cost, compared to the standard phantom.

Keywords

Main Subjects


  1.  

    1. Roa AM, Andersen HK, Martinsen AC. CT image quality over time: comparison of image quality for six different CT scanners over a six‐year period. Journal of applied clinical medical physics. 2015 Mar;16(2):350-65.
    2. Jones AK, Hintenlang DE, Bolch WE. Tissue‐equivalent materials for construction of tomographic dosimetry phantoms in pediatric radiology. Medical physics. 2003 Aug;30(8):2072-81.
    3. Tack D, Kalra MK, Gevenois PA, editors. Radiation dose from multidetector CT. Springer Science & Business Media; 2012 Jun 5.
    4. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. New England Journal of Medicine. 2007 Nov 29;357(22):2277-84.
    5. Bushberg JT, Seibert JA, Leidholdt EM Jr, Boone JM. The Essential Physics of Medical Imaging, 3rd ed. Philadelphia: Lippincott William & Wilkins, a Wolters Kluwer Business. 2012.
    6. Seeram E. Computed Tomography: Physical Principles, Clinical Application, and Quality Control, 4th ed. Australia: Elsevier. 2009.
    7. Moloney F, Twomey M, James K, Kavanagh RG, Fama D, O'Neill S, et al. A phantom study of the performance of model-based iterative reconstruction in low-dose chest and abdominal CT: When are benefits maximized?. Radiography. 2018 Nov 1;24(4):345-51. DOI: 10.1016/j.radi.2018.04.010.
    8. Mansour Z, Mokhtar A, Sarhan A, Ahmed MT, El-Diasty T. Quality control of CT image using American College of Radiology (ACR) phantom. The Egyptian Journal of Radiology and Nuclear Medicine. 2016 Dec 1;47(4):1665-71. DOI: 10.1016/j.ejrnm.2016.08.016.
    9. Haba T, Koyama S. Estimation of suitable CTDI phantom diameter for standard Japanese body size. European Congress of Radiology-ECR 2013. DOI: 10.1594/ecr2013/C-1782.
    10. Bauhs JA, Vrieze TJ, Primak AN, Bruesewitz MR, McCollough CH. CT dosimetry: comparison of measurement techniques and devices. Radiographics. 2008 Jan;28(1):245-53. DOI: 10.1148/rg.281075024.
    11. McCollough C, Cody D, Edyvean S, Geise R, Gould B, Keat N, et al. The measurement, reporting, and management of radiation dose in CT. Report of AAPM Task Group. 2008 Jan;23(23):1-28.
    12. Shope TB, Gagne RM, Johnson GC. A method for describing the doses delivered by transmission x‐ray computed tomography. Medical physics. 1981 Jul;8(4):488-95. DOI: 10.1118/1.594995.
    13. McCollough CH, Leng S, Yu L, Cody DD, Boone JM, McNitt-Gray MF. CT dose index and patient dose: they are not the same thing. Radiology. 2011 May;259(2):311-6.
    14. Choi HR, Kim RE, Heo CW, Kim CW, Yoo MS, Lee Y. Optimization of dose and image quality using self-produced phantom with various diameters in pediatric abdominal CT scan. Optik. 2018 Sep 1;168:54-60. DOI: 10.1016/j.ijleo.2018.04.066.
    15. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. A fully automated calculation of size-specific dose estimates (SSDE) in thoracic and head CT examinations. Journal of Physics: Conference Series 2016 Mar 1;694(1):012030. IOP Publishing. DOI: 10.1088/1742-6596/694/1/012030.
    16. Anam C, Haryanto F, Widita R, Arif I, Dougherty G, McLean D. Volume computed tomography dose index (CTDIvol) and size-specific dose estimate (SSDE) for tube current modulation (TCM) in CT scanning. International Journal of Radiation Research. 2018 Jul 1;16(3):289-97. DOI: 10.18869/acadpub.ijrr.16.2.289.
    17. McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT: radiation dose in CT. Radiographics. 2002 Nov;22(6):1541-53. DOI: 10.1148/rg.226025128.
    18. Bujila R, Kull L, Danielsson M, Andersson J. Applying three different methods of measuring CTDIfree air to the extended CTDI formalism for wide‐beam scanners (IEC 60601–2–44): A comparative study. Journal of applied clinical medical physics. 2018 Jul;19(4):281-9. DOI: 10.1002/acm2.12363.
    19. Boone JM. The trouble with CTDI100, 2007 Med. Phys.;34(4):1364-71. DOI: 10.1118/1.2713240.
    20. Tsapaki V, Rehani M. Dose management in CT facility. Biomedical imaging and intervention journal. 2007 Apr;3(2). DOI: 10.2349/biij.3.2.e43.
    21. Din NN, Zainon R, Rahman AT. Evaluation of radiation dose in pediatric head CT examination: a phantom study. InIOP Conference Series: Materials Science and Engineering. 2018; 298(1):012046. IOP Publishing. DOI: 10.1088/1757-899X/298/1/012046.
    22. Descamps C, Gonzalez M, Garrigo E, Germanier A, Venencia C. SU‐E‐T‐532: Measurements of the Doses Delivered during Radiotherapy CT Exams Using AAPM Task Group Report No 111. Medical physics. 2011 Jun;38(6Part19):3611. DOI: 10.1118/1.3612494.
    23. Saravanakumar A, Vaideki K, Govindarajan KN, Jayakumar S, Devanand B. Cost-effective pediatric head and body phantoms for computed tomography dosimetry and its evaluation using pencil ion chamber and CT dose profiler. Journal of Medical Physics/Association of Medical Physicists of India. 2015 Jul;40(3):170. DOI: 10.4103/0971-6203.165073.
    24. Anam C, Haryanto F, Widita R, Arif I, Fujibuchi T, Toyoda T, Dougherty G. Scatter index measurement using a CT dose profiler. J Med Phys Biop. 2017 Sep 4;4:95-102.
    25. Yohannes I, Kolditz D, Langner O, Kalender WA. A formulation of tissue-and water-equivalent materials using the stoichiometric analysis method for CT-number calibration in radiotherapy treatment planning. Physics in Medicine & Biology. 2012 Feb 14;57(5):1173. DOI: 10.1088/0031-9155/57/5/1173.
    26. Marashdeh MW, Alshipli M, Kabir NA, Tajuddin AA, Hashim R. Evaluating the Physical Properties of Epoxy Resin as a Phantom Material to Mimic the Human Liver in Computed Tomography Applications. IJACEBS. 2018;5(1):22–6.
    27. Johns HE, Cunningham JR. The physics of radiology. 4th ed. Charles C Thomas Publisher. 1983.
    28. Groenewald A, Groenewald WA. Development of a universal medical X‐ray imaging phantom prototype. Journal of applied clinical medical physics. 2016 Nov;17(6):356-65.
    29. Kumar R, Sharma SD, Despande S, Ghadi Y, Shaiju VS, Amols HI, et al. Acrylonitrile Butadiene Styrene (ABS) plastic‐based low cost tissue equivalent phantom for verification dosimetry in IMRT. Journal of Applied Clinical Medical Physics. 2010 Dec;11(1):24-32.
    30. Groenewald A, Groenewald WA. In‐house development of a neonatal chest simulation phantom. Journal of applied clinical medical physics. 2014 May;15(3):282-96. DOI: 10.1120/jacmp.v15i3.4768.
    31. Meredith WJ, Massey JB. Fundamental physics of radiology. Butterworth-Heinemann; 2013 Oct 22.
    32. Strzelec K. Studies on the properties of epoxy resins cured with polythiourethanes. International journal of adhesion and adhesives. 2007 Mar 1;27(2):92-101. DOI: 10.1016/j.ijadhadh.2006.02.001.
    33. Hilmawati R, Sutanto H, Anam C, Arifin Z, Asiah RH, Soedarsono JH. Development of a head CT dose index (CTDI) phantom based on polyester resin and methyl ethyl ketone peroxide (MEKP): a preliminary study. Journal of Radiological Protection. 2020 Jun;40(2):544-553. DOI: 10.1088/1361-6498/ab81a6.
    34. Reis JM, Jurumenh MA. Experimental investigation on the effects of recycled aggregate on fracture behavior of polymer concrete. Materials Research. 2011 Sep;14(3):326-30. DOI: 10.1590/S1516-14392011005000060.
    35. Halliday D, Resnick R, Walker J. Fundamentals of physics. John Wiley & Sons; 2013 Aug 13.
    36. Chang KP, Hung SH, Chie YH, Shiau AC, Huang RJ. A comparison of physical and dosimetric properties of lung substitute materials. Medical physics. 2012 Apr;39(4):2013-20. DOI: 10.1118/1.3694097.
    37. Amini I, Akhlaghi P, Sarbakhsh P. Construction and verification of a physical chest phantom from suitable tissue equivalent materials for computed tomography examinations. Radiation Physics and Chemistry. 2018 Sep 1;150:51-7. DOI: 10.1016/j.radphyschem.2018.04.020.
    38. Qi Z, Zambelli J, Bevins N, Chen GH. Quantitative imaging of electron density and effective atomic number using phase contrast CT. Physics in Medicine & Biology. 2010 Apr 19;55(9):2669. DOI: 10.1088/0031-9155/55/9/016.
    39. Irdawati Y, Sutanto H, Anam C, Fujibuchi T, Zahroh F, Dougherty G. Development of a novel artifact-free eye shield based on silicon rubber-lead composition in the CT examination of the head. Journal of Radiological Protection. 2019 Sep 24;39(4):991. DOI: 10.1088/1361-6498/ab2f3e.
    40. Goldman LW. Principles of CT: multislice CT. Journal of nuclear medicine technology. 2008 Jun 1;36(2):57-68. DOI: 10.2967/jnmt.107.044826.
    41. Toth TL. Dose reduction opportunities for CT scanners. Pediatric radiology. 2002 Apr 1;32(4):261. DOI: 10.1007/s00247-002-0678-7.
    42. RTI Electronic. CT Dose Summary. RTI Electronic. 2009.
    43. Corona EC, Ferreira IB, Herrera JG, López S, Covarrubias O. Verification of CTDI and DLP values for a head tomography reported by the manufacturers of the CT scanners, using a CT dose profiler probe, a head phantom and a piranha electrometer. ISSSD (2015). 2015:426-35.
    44. Anam C, Fujibuchi T, Haryanto F, Widita R, Arif I, Dougherty G. An evaluation of computed tomography dose index measurements using a pencil ionisation chamber and small detectors. Journal of Radiological Protection. 2019 Jan 4;39(1):112. DOI: 10.1088/1361-6498/aaf2b4.
    45. Cannillo B, Ostan A, Dionisi C, Fusco G, Carriero A, Brambilla M. Variability of the discrepancy between manufacturer and measured CTDI100 values by scanner type, acquisition parameters and phantom size. Physica Medica. 2018 May 1;49:34-9. DOI: 10.1016/j.ejmp.2018.04.390.
    46. Vital KD, Mendes BM, de Sousa Lacerda MA, da Silva TA, Fonseca TC. Development of a physical head phantom using of a solid brain equivalent tissue for the calibration of the 18F-FDG internal monitoring system. Radiation Physics and Chemistry. 2019 Feb 1;155:56-61. DOI: 10.1016/j.radphyschem.2018.08.037.
    47. Akpochafor MO, Adeneye SO, Ololade K, Omojola AD, Adedewe N, Adedokun A, et al. Development of computed tomography head and body phantom for organ dosimetry. Iranian Journal of Medical Physics. 2019;16(1):8-14. DOI: 10.22038/ijmp.2018.30906.1360.
    48. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. Automated calculation of water‐equivalent diameter (DW) based on AAPM task group 220. Journal of applied clinical medical physics. 2016 Jul;17(4):320-33. DOI: 10.1120/jacmp.v17i4.6171.