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Introduction: In this study, Radiomic features analysis of CT scan images of the irradiated breast compared 
to the contralateral breast after a 12 Gy boost radiation dose in IOERT was conducted to obtain radiation-
sensitive indicators (parameters) biological markers or biological dosimeters. 
Material and Methods: 35 contrast chest CT scans (with unilateral ductal carcinoma in situ (DCIS) who had 
undergone boost IOERT) were used in this study. The total number of 259 CT radiomic features (first-order, 
textural, gradient, and autoregressive model-based features) were extracted using Mazda software. The 
features that were significantly different in the two breasts were selected. A score was assigned to each of the 
features and the highest scores were characterized (according to the level of significant differences). The 
feature selection process was performed using the hybrid feature selection method. 
Results: CT Texture analysis indicated that radiation dose causes significant changes in some radiomic 
features of the breast tissue.  
Conclusion: With more research in the future, we can fit the Delta-Radiomics values with the received 
radiation dose and achieve a biological dosimeter to detect low-dose radiation. 
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Introduction 
Medical imaging techniques have become one of the 

most essential parts of the diagnosis and medical care 
system due to being noninvasive in differentiating 
between normal and abnormal tissues, easy access, 2D 
and 3D assessment, and extensive role in the 
individualization of treatment, especially in oncology. 
Moreover, these images include interpretable 
information about tissue textures that can be quantified 
through mathematical algorithms to be interpreted 
precisely. The obtained data contain features and 
patterns that can be linked to different endpoints and 
predict them [1, 2]. The resulting features are not 
physically visible; however, they provide radiological 
textures with great quantitative information about the 
tissues [3–5]. The above contents define Radiomics that 
have been used in the medical field for only a few years. 
Radiomics is a new efficient post-processing method 
that is capable of quantifying the image's parameters. 
Relying on the quantitative processing of medical 
images (obtained from CT, MRI, PET, and other 
modalities), radiomics has developed appropriate 

algorithms to analyze hidden patterns and consider 
them a more accurate way to interpret images. In 
this field, we can determine the treatment outcome, 
the efficacy of the treatment, the location of the 
distant metastasis, and the type of tumors [6–17].  

Evaluating changes resulting from treatment and 
medical interventions is one of the main parts of the 
patient's treatment process. The physician 
sometimes performs these assessments as a follow-
up through routine tests. However, the most accurate 
type of evaluation is related to those evaluations that 
our reference is quantitative information extracted 
from medical images taken from the patient.  

Among the most common cancers worldwide, 
breast cancer has the highest incidence among 
women worldwide [5]. The pathology, TNM, and the 
patient's PS (performance status) are decisive factors 
in determining the treatment protocol. One of the 
most important approaches in breast cancer 
treatment is surgery. In breast conservative surgery 
in patients with primary and local tumors, the tumor 
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bed as a possible site of later relapses (local recurrence) 
will be treated with complementary therapies such as 
radiation therapy to ensure the completion of treatment 
and reduce the risk of recurrence. Among all standard 
approaches, intraoperative radiation therapy (IORT) in 
both X-ray and Electron modes is one of the most 
recommended radiation delivery techniques in primary 
and local DCIS cases. Despite the radical approach, in 
boost intraoperative electron radiation therapy (IOERT), 
lower radiation dose is given to the tumor bed during 
surgery in the operating room which will be followed by 
external radiation therapy several months later [18–21].         

The present work aims to evaluate the tissue changes 
induced by IOERT in the irradiated unilateral DCIS breast 
by comparing the radiomic features of the DCIS with 
normal breasts to determine the radiation-sensitive 
radiomic features. 

 

Materials and Methods 
Data acquisition  

36 chest CT scans (Toshiba multi-slice 32, Japan) 
series of unilateral breast cancer patients diagnosed with 
DCIS undergoing boost intraoperative electron beam 
radiotherapy (12 Gy) (LIAC, Sordina, Italy) were used in 
the current study. To locate the exact site of the tumor 
bed in order to conduct treatment planning in external 
radiotherapy and dose delivery Surgical clips were 
placed in the tumor bed which improved irradiated 
breast tissue contouring.  

 
ROI segmentation 

We used the Mazda software [22–24] developed at 
the Institute of Electronics, Technical University of Lodz 
(TUL), Poland, by two radiologists and breast cancer 
surgeons (with more than 15 years of experience in this 
area), the contours were drawn by a radiologist. Then it 
was evaluated by a breast cancer surgeon and applied if 
it needed to be changed. In addition, the volumes of both 
irradiated and contralateral breasts were performed 
equally in each patient through a manual contouring 
approach (Figure 1).  
 
Feature extraction 

Following the segmentation, the radiomic features of 
the region of interest (ROI) were calculated. In the 
current study Histogram based, textural features 
including Gradient, Gray level run length matrix, Gray 
level co-occurrence matrix, and autoregressive models 
feature all in two-dimensional were calculated (Table 1). 
 
Feature selection 

Data were normalized between 0-1 using IBM SPSS 
Modeler 18.0, 2019 (IBM Inc, Armonk, New York, USA) 
[25]. After data normalization, analysis (including feature 
selection) was implemented. Feature selection assists in 
achieving robust features and designing powerful 
models for predicting different endpoints. For this 
purpose, we utilized the hybrid method that includes 

two filter and wrapper feature selection approaches [26–
28]. 

 

 
 
Figure 1. The ROI segmentation in CT images using Mazda software 

for extraction and analysis of radiomic features (red area: irradiated 
breast; green area: contralateral breast). 

 
Filter method 

In this method the feature selection is performed 
based on statistical analysis without machine learning 
algorithms employment [29, 30], so features are rated 
and weighted based on the scores they receive from 
Pearson's Chi-square test. This score is proportional to 
the (p-value) where the p-value is <0.05. The highest 
values of these scores indicate the highest correlation 
between the selected features and the point of the study 
(Table 2). Features with the highest score are considered 
input variables of the wrapper method. 

 
Wrapper method 

Wrapper selects effective features using machine-
learning classifiers [26, 31, 32]. The importance of 
features is determined by sum-of-squares errors. In 
forward selection, low values of this index indicate a 
greater correlation between the selected feature and the 
target (irradiated breast). We applied three machine-
learning algorithms: (1) neural network, (2) Bayesian 
network, and (3) Support Vector Machine (SVM). Briefly, 
Artificial neural networks (ANNs) generally include two 
fixed input and output layers and several intermediate or 
variable hidden layers, in addition to that, each layer 
contains several neurons that have a specific weight and 
threshold, and even though they work independently of 
each other, they are connected with each other. Neural 
networks will be able to perform effectively only if they 
learn accurately and have enough data. In fact, if these 
networks are well-trained, they will be able to classify 
data at a very high speed [33].  
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Table 1. The extracted features by Mazda software. 
 

Feature name Feature class Row 

Mean (histogram’s mean) 

HISTOGRAM 
Total number of histogram-based 
features: 9 

1 

Variance (histogram’s variance) 

Skewness (histogram’s skewness) 

Kurtosis (histogram’s kurtosis) 

Perc.01% (1% percentile) 

Perc.10% (10% percentile) 

Perc.50% (50% percentile) 

Perc.90% (90% percentile) 

Perc.99% (99% percentile) 

GrMean (absolute gradient mean) 

GRADIENT 
Total number of absolute gradient-
based features: 5 

2 

GrVariance (absolute gradient variance) 

GrSkewness (absolute gradient skewness) 

GrKurtosis (absolute gradient kurtosis) 

GrNonZeros (percentage of pixels with nonzero 
gradient) 

RLNonUni (run-length nonuniformity) RUN-LENGTH MATRIX 
 
Features are computed for 4 (2D 
images) 
 
Total number of run-length matrix-
based features: 20 (2D) or 65 (3D) 
 

3 

GLevNonU (grey level nonuniformity) 

LngREmph (long-run emphasis) 

ShrtREmp (short-run emphasis) 

Fraction (fraction of image in runs) 

AngScMom (angular second moment) 

COOCCURRENCE MATRIX 
 
Features are computed for 5 
between-pixels distances (1, 2, 3, 4, 
5) 
Total number of co-occurrence 
matrix-based features: 220 (2D) or 
715 (3D 

4 
 
 

Contrast (contrast) 

Correlate (correlation) 

SumOfSqs (sum of squares) 

InvDfMom (inverse difference moment) 

SumAverg (sum average) 

SumVarnc (sum variance) 

SumEntrp (sum entropy) 

Entropy (entropy) 

DifVarnc (difference variance 

DifEntrp (difference entropy 

Teta1 (parameter θ1) 

AUTOREGRESSIVE MODEL 
Total number of autoregressive 
model-based features: 5 

5 

Teta2 (parameter θ2) 

Teta3 (parameter θ3) 

Teta4 (parameter θ4) 

Sigma (parameter σ) 

 
Table 2. The statistic parameters of the final selected features. 
 

Feature name Min Max Mean Std. dev 

Teta1 -0.04 0.90 0.62 0.13 

S(0 3)Correlat -0.09 0.84 0.50 0.22 

S(1 0)Correlat 0.08 0.99 0.81 0.10 

Vertl_RLNonUni 699.94 8546.94 3524.18 1539.68 

S(1 0)Contrast 1.373 36.502 10.87 5.57 

S(1 0)DifVarnc 0.61 14.22 4.31 2.04 

S(0 3)DifVarnc 1.89 48.87 14.57 7.69 

Among other machine learning algorithms, we 
can mention the Bayesian network, where the 
probability of occurrence of a variable is possible 
based on training and data provided to the network. 
In fact, this algorithm determines the independent 

relationship of random variables. In such a way that 
despite the correlation of the features of a class, 
there is no direct connection between all the features 
[33]. 
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Figure 2. The workflow of images, feature extraction, and selection.  

Support Vector Machine (SVM) is one of the 
supervised algorithms used in both classification and 
regression domains; however, it is mostly used in 
classification. Depending on the number of features 
of a data set (n) each data sample is drawn as a point 
in the n-dimensional space on the space diagram and 
the value of each feature related to the data is one of 
the components of the coordinates of the point on 
the diagram. In the following, a straight line will 
categorize different data [33].  

In the end, we achieved fewer features than the 
filter method and a single score for each feature (by 
averaging the scores obtained from these three 
algorithms). 

Figure 2 shows the workflow of our study which 
has been described in the following sections. It is not 
possible to measure the radiation dose exclusively 
inside the radiation field in the patient's body under 
treatment (although it is possible to measure the 
scattered dose by placing dosimeters such as film 
around the applicator that is not evaluated in this 
study). Instead, the dose reached the target volume, 
and the reference depth can be seen by performing 
previous dosimetry using phantom and calibrating 
the output of the device, the information obtained 

from TPS, and observing the Isodose curves after the 
treatment planning. The accelerator used in the 
treatment of patients under the brand name LIAC, 
manufactured by the Italian company Sordina in 
2003, has two energy modes (10 and 12 MeV). 

 

Results 
Radiomic features 

We obtained 259 radiomic features described in 
Table 1. Since all 259 features were not significantly 
different in both breasts, the number was reduced to 
241 by applying the filter method. In the next step, only 
features that their p-value<0.05 were considered inputs 
for the wrapper method using Neural network, 
Bayesian network, and SVM algorithms. These features 
were assigned a score depending on the level of the 
feature's difference. In this study, the assessment of 
each algorithm was conducted separately through its 
receiver operating characteristic (ROC) and area under 
the curve (AUC) (Figure 3). The final mean of these 
values (for the three algorithms) was a sensitivity of 
90%, a specificity of 80.3%, and the AUC of 0.9. 
Moreover, the Min, Max, Mean, and Standard deviation 
of the final features were given in Table 2. In our study, 

End 

Final feature selection by averaging the 

selected features scores obtained from the 

three algorithms 

Start 

Data acquisition (CTScan images) 

(n=36) 
Yes 

NO 

Check for over 

fitting and under 

fitting 

Qualitative evaluation 

of CT images in terms 

of artifact and sufficient 

volume of treated breast 

NO 

Scoring significant features by 

using Neural Net, Bayes Net, and 

SVM 

Yes 

ROI segmentation and radiomics feature 

extraction 

 

Statistical analysis to determine 

features with significant change in two 

breasts 
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we concluded receiving a 12 Gy dose caused structural 
changes in breast tissue that later appeared in radiomic 
features of breast tissues. These results (Teta1, S(0,3) 
Correlate, S(1,0) Correlate, Vertl_RLNonUni, S(1,0) 

Contrast, S(1,0) DifVarnc, and S(0,3) DifVarnc) can be 
strongly correlated with the dose of radiation (12 Gy) 
given to the patient in a single session (Figure 4). 
 

 
 
 

 
 

Figure 3. The receiver operating characteristic curve of each algorithm ((a) Neural network, (b) Bayes network, and (c) SVM). 
 

 
 

Figure 4. The selected features by the wrapper method. 
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Discussion 
Given the particular role of all radiation therapies 

in cancer treatment, evaluating the consequences of 
receiving different radiation doses will be more 
important than ever, this is while the ability of 
radiomics in treatment evaluation, complications, 
and local and distant recurrences' prediction has 
been demonstrated. Previous studies have 
investigated the link between radiation dose and 
treatment-related complications [34–37]. Studies 
have shown that changes in the features after 
radiation are obvious. However, as we know from a 
radiobiological point of view, due to the complexity 
of the body's mechanism in damage repair, we have 
different effects in tissues after the fractionated dose 
and single dose, which requires more focused 
studies. In the current study, the radiomic features of 
the irradiated breast after mass extraction and boost 
IOERT and the contralateral breast were 
investigated, and it is concluded that some features 
were significantly changed. We found that there is a 
relationship between the radiomics features and 
radiation dose (12 Gy). Most of these features 
registered post-radiation changes, but some of them 
were significantly different in the two breasts, 
including Teta1, S(0,3Correlate, S(1,0) Correlate, 
Vertl_RLNonUni, S(1,0) Contrast, S(1,0) DifVarnc and 
S(0,3) DifVarnc had the highest differences between 
the two breasts. Cunliffe et al. [34] in a study 
evaluated radiomic features of CT scan images in 
patients before and after radiation therapy in order 
to investigate the possible relationship between 
esophageal radiotherapy-induced pneumonia and 
radiation dose and found that 12 radiomic features 
changed significantly after radiation therapy.  

Our study aimed to investigate the ability of 
radiomics to detect irradiated tissue in chest CT scan 
images of breast cancer patients who underwent 
boost IOERT. According to the results, all features 
had different levels of variation and correlation with 
radiation dose. Therefore, there is a need for future 
studies to investigate changes in the features after 
receiving different doses of radiation, different time 
intervals after receiving radiation, and other tissues 
to provide a more accurate and practical correlation 
between the radiation dose and changes in features. 
Then, the use of radiomic features as a biological 
dosimeter in radiation dosimetry will be established. 

 

Conclusion 
The present study showed that radiation dose 

changes the features extracted from CT scan images 
of breast tissue. Further studies can be done in two 
general areas including model building to detect 
absorbed dose in breasts and other tissues and 
determine dedicated radiomic features to predict 
each complication resulting from treatment. 

Consequently, appropriate action can be taken to 
prevent or reduce the severity of the complications. 
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