• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Medical Physics
Articles in Press
Current Issue
Journal Archive
Volume Volume 15 (2018)
Volume Volume 14 (2017)
Volume Volume 13 (2016)
Volume Volume 12 (2015)
Volume Volume 11 (2014)
Volume Volume 10 (2013)
Volume Volume 9 (2012)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 8 (2011-in Persian)
Volume Volume 7 (2010-in Persian)
Volume Volume 6 (2009-in Persian)
Volume Volume 5 (2008-in Persian)
Volume Volume 4 (2007-in Persian)
Volume Volume 3 (2006-in Persian)
Volume Volume 2 (2005-in Persian)
Iranian Journal of
Medical Phycics
Rejection Rate 20%

Average Time to First Decision (Days)

43.62

Number of Articles

350

Number of Contributors

1,080

Article View 

327,891

PDF Download

300,508

PDF Download Per Article

858.59

Number of Reviewers

397

Pourfallah, T., Allahverdi, M., Zahmatkesh, M. (2012). Evaluation of the Effects of Inhomogeneities on Dose Profiles Using Polymer Gel Dosimeter and Monte Carlo Simulation in Gamma Knife. Iranian Journal of Medical Physics, 9(1), 1-8. doi: 10.22038/ijmp.2012.321
Tayeb Allahverdi Pourfallah; Mahmoud Allahverdi; Mohammad Hasan Zahmatkesh. "Evaluation of the Effects of Inhomogeneities on Dose Profiles Using Polymer Gel Dosimeter and Monte Carlo Simulation in Gamma Knife". Iranian Journal of Medical Physics, 9, 1, 2012, 1-8. doi: 10.22038/ijmp.2012.321
Pourfallah, T., Allahverdi, M., Zahmatkesh, M. (2012). 'Evaluation of the Effects of Inhomogeneities on Dose Profiles Using Polymer Gel Dosimeter and Monte Carlo Simulation in Gamma Knife', Iranian Journal of Medical Physics, 9(1), pp. 1-8. doi: 10.22038/ijmp.2012.321
Pourfallah, T., Allahverdi, M., Zahmatkesh, M. Evaluation of the Effects of Inhomogeneities on Dose Profiles Using Polymer Gel Dosimeter and Monte Carlo Simulation in Gamma Knife. Iranian Journal of Medical Physics, 2012; 9(1): 1-8. doi: 10.22038/ijmp.2012.321

Evaluation of the Effects of Inhomogeneities on Dose Profiles Using Polymer Gel Dosimeter and Monte Carlo Simulation in Gamma Knife

Article 1, Volume 9, Issue 1, March 2012, Page 1-8  XML PDF (510 K)
Document Type: Original Paper
DOI: 10.22038/ijmp.2012.321
Authors
Tayeb Allahverdi Pourfallah 1; Mahmoud Allahverdi2; Mohammad Hasan Zahmatkesh3
1Biochemistry and Biophysics Dept., Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
2Medical Physics Dept., Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3Novin Medical Radiation Institute, Tehran, Iran
Receive Date: 15 January 2012,  Revise Date: 03 March 2013,  Accept Date: 01 February 2012 
Abstract
Introduction
Polymer gel dosimeters offer a practical solution to 3D dose verification for conventional radiotherapy as well as intensity-modulated and stereotactic radiotherapy. In this study, EGSnrc calculated and PAGAT polymer gel dosimeter measured dose profiles from single shot irradiation with 18 mm collimator of Gamma Knife in homogeneous and inhomogeneous phantoms were compared with each other.
Materials and Methods
The head phantom was a custom-built 16 cm diameter plexiglas sphere. Inside the phantom, there were two cubic cutouts for inserting the gel vials and inhomogeneities. Following irradiation with the Gamma Knife unit, the polymer gel dosimeters were scanned with a 1.5 T MRI scanner. For the purpose of simulation the simplified channel of 60Co source of Gamma Knife BEAMnrc and for extracting the 3D dose distribution in the phantom, DOSXYZnrc codes were used.
Results
Within high isodose levels (>80%), there are dose differences higher than 7%, especially between air inserted and PTFE inserted phantoms, which were obtained using both simulation and experiment. This means that these values exceed the acceptance criterion of conformal radiotherapy and stereotactic radiosurgery (i.e., within some isodose levels, less than 93% of prescription dose are delivered to the target).
Conclusion
The discrepancies observed between the results obtained from heterogeneous and homogeneous phantoms suggest that Leksell Gamma Knife planning system (LGP) predictions which assume the target as a homogeneous material must be corrected in order to take care of the air- and bone-tissue inhomogeneities.
Keywords
Dose Profile; Gamma Knife; Inhomogeneity; Monte Carlo; Polymer Gel Dosimeter
Main Subjects
Medical Physics; Physics of Radiotherapy; Radiation Detection & Measurement
References
  1. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102:316-19.
  2. Mack A, Scheib S, Major J, Gianolini S, Pazmandi G, Feist H, Czempiel H, Kreiner H. Precision dosimetry for narrow photon beams used in radiosurgery-determination of Gamma Knife output factors. Med Phys. 2002;29(9):2080-9.
  3. Yu C, Shepard D. Treatment planning for stereotactic radiosurgery with photon beams. Technol Cancer Res Treat. 2003;2:93–104.
  4. Moskvin V, Timmerman R, DesRosiers C, Randall M, DesRosiers P, Dittmer P, Papiez L. Monte Carlo simulation of the Leksell gamma Knife (R): II. Effects of heterogeneous versus homogeneous media for stereotactic radiosurgery. Phys Med Biol. 2004;49(21):4879-4895.
  5. Rogers D, Faddegon B, Ding G, Ma C, Wei J, Mackie T. BEAM: A Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1995;22:503 – 524.
  6. Nelson W, Hirayama H, Rogers D. The EGS4 Code System. Stanford Linear Accelerator Center, Stanford, California; 1985.Report SLAC–265.
  7. Kawrakow I, Mainegra-Hing E, Rogers D, Tessier F, Walters B. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. Ottawa : National Research Council of Canada; 2011.Report PIRS-701.
  8. Fong PM, Keil DC, Does MD, Gore JC. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol. 2001;46(12):3105-13.
  9. Venning AJ, Nitschke KN, Keall PJ, Baldock C. Radiological properties of normoxic polymer gel dosimeters. Med Phys. 2005;32(4):1047-53.
  10. Al-Dweri FM, Rojas EL, Lallena AM. Effects of bone- and air-tissue inhomogeneities on the dose distributions of the Leksell Gamma Knife calculated with PENELOPE. Phys Med Biol. 2005;50(23):5665-78.
  11. Cheung JY, Yu KN. Dose distribution close to metal implants in gamma knife radiosurgery: A Monte Carlo study [letter]. Med Phys. 2005;32(5):1448-9.
  12. Lewis RD, Ryde SJ, Seaby AW, Hancock DA, Evans CJ. Use of Monte Carlo computation in benchmarking radiotherapy treatment planning system algorithms. Phys Med Biol. 2000;45(7):1755-64.
  13. Pourfallah TA, Allahverdi M, Alam NR, Ay MR, Zahmatkesh MH, Ibbott GS. Performance evaluation of MRI-based PAGAT polymer gel dosimeter in an inhomogeneous phantom using EGSnrc code on a Co-60 machine. Appl Radiat Isot. 2009;67(1):186-91.
  14. Allahverdi Pourfallah T, Allahverdi M, Riahi Alam N, Ay MR, Zahmatkesh MH. Verifying the accuracy of dose distribution in gamma knife unit in presence of inhomogeneities using PAGAT polymer gel dosimeter and MC simulation. Iran J Radiat Res. 2009;7:49-56.
  15. Pourfallah TA, Allahverdi M, Alam NR, Ay MR, Zahmatkesh MH. Differential dose volume histograms of Gamma Knife in the presence of inhomogeneities using MRI–polymer gel dosimetry and MC simulation. Med Phys. 2009;36(7):3002-12.
  16. De Deene Y, Vergote K, Claeys C, De Wagter C. The fundamental radiation properties of normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels. Phys Med Biol. 2006;51(3):653-73.
  17. Venning AJ, Hill B, Brindha S, Healy BJ, Baldock C. Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys Med Biol. 2005;50(16):3875-88.
  18. Rogers DWO, Walters B, Kawrakow I. BEAMnrc Users Manual. Ottawa : National Research Council of Canada; 2007 May. 268 p. Report PIRS-0509(A)revL.
  19. Treurniet JR, Walters BR, Kawrakow I, Rogers DWO. BEAMnrc, DOSXYZnrc and BEAMDP GUI User’s Manual. Ottawa: National Research Council of Canada; 2005 Jul. 17 p. Report PIRS-0623(rev C).
  20. Al-Dweri FM, Lallena AM, Vilches M. A simplified model of the source channel of the Leksell GammaKnife (R) tested with PENELOPE. Phys Med Biol. 2004;49(12):2687-703.
  21. Walters B, Kawrakow I, Rogers DWO. DOSXYZnrc Users Manual. Ottawa : National Research Council of Canada; 2009 Jul. Report PIRS-794revB.
  22. Perez CA, Brady LW, Halperin EC, Schmidt-Ullrich RK. Principles and Practice of Radiation Oncology.4nd ed.  Philadelpia: LIPPINCOTT WILLIAMS & WILKINS; 2004.
  23. Isbakan F, Ulgen Y, Bilge H, Ozen Z, Agus O, Buyuksarac B. Gamma Knife 3-D dose distribution near the area of tissue inhomogeneities by normoxic gel dosimetry. Med Phys. 2007;34(5):1623-30.
  24. De Deene, Y. On the accuracy and precision of gel dosimetry. J Phys Conf Ser. 2006;56:72–85.
Statistics
Article View: 2,488
PDF Download: 1,690
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.