Original Article

Compliance of Radiation Dose and Image Quality in a Nigerian Teaching Hospital with the European Guidelines for Pediatric Screen-Film Chest Radiography

Nneoyi O. Egbe¹*, AO Akintomide², Grace Ben Inah², Emmanuel Owolo¹

Abstract

Introduction
Over the years, the consequences of ionizing radiation have prompted major efforts towards producing radiographs of acceptable quality with dose values in compliance with safety standards and the ALARA principle. The aim of this study is to assess the compliance of radiation dose and image quality in a major Nigerian teaching hospital to the guidelines established by the Commission of European Communities (CEC) on optimized pediatric radiography.

Materials and Methods
The entrance skin dose (ESD) and image quality were studied among pediatric patients (age range: 0–15 years), referred to the hospital for chest radiographic examinations. Radiographic exposure factors were recorded in each examination. ESD was determined using a dose calculation software program (DoseCal®). The calculated ESD values were weighed against the CEC recommended doses and compared among different age groups through mean comparison. Based on the CEC image quality criteria, the resulting chest radiographs were assessed in terms of image quality.

Results
The overall image quality was high in over 70% of images (Fleiss' kappa=0.63). The obtained ESD values were higher than the recommended CEC values (80 and 100 µGy for children aged 0-1 and 5 years, respectively). Also, the ESD values were higher than the recommended values by 26% in the age group of 0–1 year and 9-10% in the other age groups. However, there was no significant difference between the age groups in terms of radiation dose.

Conclusion
The findings show that a considerable reduction in radiographic exposure factors (or doses) could still produce images with an acceptable diagnostic quality. This dose reduction could be achieved by reducing mAs, increasing kVp and adopting high-performance X-ray generators.

Keywords: Chest, Film, Image Quality, Pediatric, Radiation Dose, X-ray

1. Department of Radiography & Radiological Science, University of Calabar, Nigeria
2. Department of Radiology, University of Calabar, Calabar, Nigeria
* Corresponding author: Tel: +2347065920955; E-mail: nneoyiegbe@unical.edu.ng, nneoyiegbe@yahoo.com, nneoyiegbe@gmail.com
1. Introduction
The aim of quality control in diagnostic radiography is to specify or define acceptable levels for radiographic images in order to meet the expected clinical goals [1]. Overall, high-quality radiological practice is based on two dependent and fundamental factors, i.e., image quality and radiation dose. Over the years, the consequences of ionizing radiation have prompted major efforts towards producing radiographs of acceptable quality with dose values in compliance with safety standards and the ‘As Low As Reasonably Achievable (ALARA) principle’ [2]. In practice, the balance between image quality and the doses used in diagnostic examinations is of great significance [3-5]. This balance is even more important with respect to pediatric X-ray imaging.

At similar effective doses, late manifestations of detrimental radiation exposure are more likely in children, compared to adults [6]. The greater radiosensitivity in children, in addition to the prolonged opportunity for the presentation of induced malignancies, raises concerns about pediatric radiation doses and highlights the importance of minimizing radiation doses from medical sources in pediatric patients [7]. Overall, application of a proper radiographic technique is cost-effective and integral to quality improvement in diagnostic radiology. Moreover, the staff’s experience and commitment are essential to delivering high-quality imaging services [8, 9].

By applying the image quality criteria proposed by the Commission of European Communities (CEC) [10] and the recommended entrance surface doses (ESDs) for children, we aimed to establish the level of adherence or compliance of a teaching hospital in Nigeria with international standards. In previous studies, differences have been reported in adherence to the recommended guidelines for optimized practice [11]. The present study is of great significance considering the paucity of similar research on pediatric radiographic examinations in the region. In fact, the conducted studies have not considered radiation dose and image quality in pediatric patients but have mainly focused on adults [9, 12, 13]. Therefore, this study could set the grounds for radiation dose and image quality in optimized pediatric radiography in Nigeria.

2. Materials and Methods
A total of 104 children were examined with a combination of two single-phase two-pulse X-ray generators, i.e., a Philips Practix 300 (Philips Inc.) with a total tube filtration of 2.5 Al equivalent at 70 kV, and a TMX+ (GE Medical), with a total tube filtration of 2.7 mmAl equivalent at 70 kV. The performance characteristics (i.e., output, kVp and time reproducibility) of the tubes were determined, using a factory-calibrated Accu Pro 60cc radiation detector (Radcal Corporation, USA). Other X-ray generator parameters are presented in Table 1.

Radiographic examination parameters including tube potential (kVp), tube current (mAs), and focus-to-film distance (FFD) were recorded for each subject. ESDs were mathematically calculated, using DoseCal® software, developed by St. George’s Hospital, London, UK. This software, used in radiation dose studies, has shown good agreement with thermoluminescent dosimeter (TLD) measurements [14-16]. The software required the determination of calibration data for the respective X-ray tubes and using the same as input, along with patient data including age, weight, and radiographic exposure factors for the respective examinations, to determine the entrance surface doses.

X-ray films (blue base) with calcium tungstate screens (standard film-screen cassette combination) were used in this study [17, 18]. The films were manually processed, based on the standard clinical darkroom protocols for maintaining the processing consistency and image quality. Considering the extended period of the study (six months), the tubes’ performance was checked bi-monthly to ensure output consistency throughout the study.
Table 1. X-ray generator parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Philips Practix 300</th>
<th>TMX+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator type</td>
<td>Single phase two pulse</td>
<td>Single phase two pulse</td>
</tr>
<tr>
<td>Maximum kVp</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Maximum mA</td>
<td>0.1-200 (mAs)</td>
<td>300</td>
</tr>
<tr>
<td>Total filtration</td>
<td>2.5 Al</td>
<td>2.7 Al</td>
</tr>
<tr>
<td>Nominal focal spot size</td>
<td>0.6/1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>*AEC</td>
<td>Not used</td>
<td>Not used</td>
</tr>
<tr>
<td>**FFD</td>
<td>70 –200 cm</td>
<td>130 cm</td>
</tr>
<tr>
<td>Additional filtration</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

*AEC: Automatic exposure control, **FFD: Focus-to-film distance

Table 2 The image quality criteria by the Commission of European Communities (CEC) for pediatric chest imaging

<table>
<thead>
<tr>
<th>Criteria codes (C) and the anatomical landmarks of interest on the radiographs</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Examination performed at peak inspiration except for the suspected foreign body aspiration</td>
</tr>
<tr>
<td>C2 Reproduction of the thorax without rotation or tilting</td>
</tr>
<tr>
<td>C3 Reproduction of the chest must extend from just above the apices of the lungs to T12/L2.</td>
</tr>
<tr>
<td>C4 Reproduction of vascular patterns in central 2/3 of the lungs</td>
</tr>
<tr>
<td>C5 Reproduction of the trachea and bronchi</td>
</tr>
<tr>
<td>C6 Visually sharp reproduction of the diaphragm and costophrenic angles</td>
</tr>
<tr>
<td>C7 Reproduction of spinal and paraspinal structures and visualization of the retrocardiac lung and mediastinum.</td>
</tr>
</tbody>
</table>

Since the current study was aimed at assessing the overall compliance in the hospital, the radiographs were not categorized with respect to the involved x-ray unit. All radiographs were pooled together, and the calculated ESDs were matched to the respective radiographs after image quality assessments. The radiographs were assessed independently in terms of image quality by three consultant radiologists. The average experience of the observers in the assessment of pediatric chest images was 12 years (range: 8 - 15 years).

2.1. Image assessment

The radiographs were assessed for image quality, based on the image assessment criteria set by CEC (Table 2) [10]. Each observer studied the radiographs while reviewing clinical films and recorded the scores in a chart prepared for this purpose. The observers worked in three different rooms and were not informed about the reports by other observers. The viewing boxes and ambient lighting conditions were checked for uniformity in the three reading rooms.

The observers rated the images from zero to one. A score of zero was given to a radiograph fulfilling less than five out of seven CEC criteria, while a score of one was given to radiographs meeting five to seven CEC criteria. The films in which pathologies or artefacts obscured relevant areas were excluded from the study, and the corresponding ESDs removed from the final computation. It was not possible to get the observers’ second opinion for determining intra-observer consistency, owing to the pressure to release the films for patient management. However, the inter-observer agreement was determined by calculating Fleiss’ kappa coefficient among the three readers. The radiograph scores reported by the three observers were averaged to determine the overall image quality score for each radiograph.

Moreover, the scores (and standard deviations) related to each image criteria, reported by each observer, were calculated. The mean values were averaged over the observers to determine...
the overall score for each criterion, which could indicate the areas requiring attention in chest radiography at the department. Analysis of means was used to assess the differences in radiation doses between the age groups.

3. Results
The X-ray tubes had an average kVp reproducibility of < 6% [19]. The tube current and exposure time had a 10% variation. The average X-ray tube output for the two units varied between 5% and 7% throughout the study period. The average ambient room light was less than 50 lux, while the luminance values for the viewing boxes were greater than 2500 (with a ±3% variation between the boxes).

The overall image quality score was 0.76±0.4, based on the average score of each film, reported by the three observers (Figure 3). The inter-observer agreement yielded a kappa value of 0.63 (P <0.05). The mean ESD calculated for the pediatric chest radiographs was 107.6±16.3 µGy. Table 3 shows the results of radiation dose and image quality assessments in the respective age ranges. As the findings indicated, an insignificant reverse correlation was detected between image quality scores and ESD estimates (r=0.11).
Pediatric Chest Dose and Image Quality in a Nigeria Hospital

Table 3. Patient dose and image quality scores in different age groups

<table>
<thead>
<tr>
<th>Age range (years)</th>
<th>Number of subjects</th>
<th>Mean IQS*</th>
<th>Mean ESD (µGy)</th>
<th>CEC**(µGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 1</td>
<td>31</td>
<td>0.72±0.4</td>
<td>110.4±14.6</td>
<td>80</td>
</tr>
<tr>
<td>1 – 5</td>
<td>52</td>
<td>0.69±0.4</td>
<td>109.4±16.6</td>
<td>100</td>
</tr>
<tr>
<td>5 – 10</td>
<td>10</td>
<td>0.80±0.3</td>
<td>109.0±16.8</td>
<td>100</td>
</tr>
<tr>
<td>10 – 15</td>
<td>11</td>
<td>0.83±0.4</td>
<td>101.4±9.7</td>
<td>100</td>
</tr>
</tbody>
</table>

*IQS: Image quality score averaged over the three observers
**CEC: Recommended values by the Commission of European Communities (CEC)

Figure 3. Number of films meeting the respective scores (0: < 5 criteria; 1: ≥ 5 criteria) by the respective observers. PIS = per image/radiograph score.

Figures 1 and 2 demonstrate the distribution of tube potentials and tube currents, applied in pediatric chest radiography at the hospital, respectively. Clearly, over 60% of the subjects were examined with tube potentials below 60 kVp. Up to 30% of the studied subjects might have received doses with the product of the tube currents and exposure times greater than 20 mAs. As reported by the observers, more than 70% of the radiographs met more than five of CEC criteria (Figure 3). Based on the assessment of each criterion, the first, second and fourth image criteria received the lowest ratings by the observers (Figure 4).

4. Discussion
In the present study, patient entrance doses and image quality were determined. The mean ESD was 107.6±16.3 µGy, and the average radiation doses for each age range were found to be higher than the values recommended by CEC for pediatric radiography (Table 2) [10]. The established CEC values for pediatric doses are specified at 80 µGy for the newborns and 100 µGy for a normal five year old child; a radiation dose of 100 µGy has been also reported in 10 and 15 year old subjects. Previous studies have reported dose values of 76.3 [20], 298 [16] and 179 µGy [21], indicating variations in practice [11]. In this study, the average doses exceeded the recommended values by 26% and 9-10% in subjects within the age range of 0-1 year and other age groups, respectively. However, no significant difference was found in radiation doses between the respective age groups (P > 0.05). The present results are in agreement with the doses measured in three tertiary hospitals in an earlier study in which similar high radiation doses were reported [9]. Such high doses expose children to a greater risk of cancer (as the cells actively divide) and induce genetic mutations in subsequent generations [6].
In the present study, the average exposure factors including the film-focus distance (FFD), tube potential, and tube current were 105.5±15.8 cm, 58.3±10 kVp and 17.9±12.9 mAs, respectively. The average kVp and FFD were equal to and below the recommended European guidelines (60 kVp and 100 - 130 cm), respectively. The applied kVp range may partly account for the observed high doses. In this study, the tube potentials were within the range of 48 - 70 kV.

Over 67% of the subjects (especially those aged 0-1 year) were examined with tube potentials lower than the minimum recommended value (60 kVp) (Figure 1). In fact, use of a high kVp technique would reduce the dose without affecting the image quality; this has been revealed in previous research [22].

The present study showed the compliance of FFD criteria with the guidelines, as most of the anteroposterior examinations were conducted at maximum tube column distance (130 cm). The tube current and exposure time controls were linked together in the two units. Consequently, the operator had restricted control over mA contribution to the results. However, mA values in the range of 4.8 - 30 were recorded in the study.

At least one third of the subjects in this study were examined with mAs > 20 (Figure 2). Although no guidelines for mAs are available in the CEC document, the applied range of mA may be related to the high radiation doses. Also, given the fact that the used X-ray machines were low-powered, the use of single-phase two-pulse units encumbered the selection of exposure times less than 10 ms. This may also account for the high radiation doses.

Similar results of previous studies on adult participants indicate the need for changes in protocols and regular quality control tests [9, 13, 23]. In the present study, the image quality at high doses was sufficient to suggest the possibility of significant dose reduction without causing any decline in image quality. This finding has been demonstrated in several studies [23 - 25]. In the present research, the inter-observer agreement was satisfactory (kappa = 0.63), and high image quality was reported in more than 70% of images. The low scores on the first, second, and fourth criteria may be indicative of the need for adopting immobilization devices, which would aid patient positioning.

Clearly, there are great challenges in the diagnostic examination of younger children. The poor Pearson’s correlation value (r = 0.1)
indicating the link between radiation dose and image quality in this study, suggests that the operators might not have followed the standards for the acquisition of pediatric images. This in fact, highlights the need for establishing quality control programs [26]. Considering the high radiosensitivity in children [6], standard protocols are required to optimize the process of pediatric radiography. One way to meet this requirement may be the use of dedicated X-ray imaging outlets for pediatric subjects, including high-frequency generators which deliver higher outputs and allow very short exposure times and lower doses unlike the current use of two-pulse units.

5. Conclusion
In this study, pediatric chest radiography delivered high-quality images with skin doses above the established European criteria. The findings showed that a decline in radiographic exposure factors (or doses) could still produce images with acceptable diagnostic quality. This dose reduction could be achieved by reducing mAs, increasing kVp, and using high-performance X-ray generators.

Acknowledgment
The authors would like to thank the radiographers and all the patients who participated in this study.

References