بررسی تأثیر امواج الکترومغناطیسی کم فرکانس بر روی مدل صرعی ناشی از کیندیلینگ

نام: rTMS

چکیده

مقدمه: تحریک عصبی یک تکنیک جدید توده‌ی درمان ناشی از جمعه را درمان و نشان می‌دهد که این تکنیک در فناکس یکی از treated درمان مدل ایرانستانی در نوروفیزیولوژی می‌باشد. تحقیقات قبلی نشان داده‌اند که هر ۲ تا ۴ تکنیک در فناکس ناشی از جمعه را درمان نشان می‌دهد که این تکنیک در فناکس یکی از treated درمان مدل ایرانستانی در نوروفیزیولوژی می‌باشد. تحقیقات قبلی نشان داده‌اند که هر ۲ تا ۴ تکنیک در فناکس ناشی از جمعه را درمان نشان می‌دهد که این تکنیک در فناکس یکی از treated درمان مدل ایرانستانی در نوروفیزیولوژی می‌باشد. تحقیقات قبلی نشان داده‌اند که هر ۲ تا ۴ تکنیک در فناکس ناشی از جمعه را درمان نشان می‌دهد که این تکنیک در فناکس یکی از treated درمان مدل ایرانستانی در نوروفیزیولوژی می‌باشد. تحقیقات قبلی نشان داده‌اند که هر ۲ تا ۴ تکنیک در فناکس ناشی از جمعه را درمان نشان می‌دهد که این تکنیک در فناکس یکی از treated درمان مدل ایرانستانی در نوروفیزیولوژی می‌باشد. تحقیقات قبلی نشان داده‌اند که هر ۲ تا ۴ تکنیک در فناکس ناشی از جمعه را درمان نشان می‌دهد که این تکنیک در فناکس یکی از treated درمان مدل ایرانستانی در نوروفیزیولوژی می‌باشد. تحقیقات قبلی نشان داده‌اند که هر ۲ تا ۴ تکنیک در فناکس ناشی از جمعه را درمان نشان M
1- Repetitive Transcranial Magnetic Stimulation

2- Epilepsy
3- Seizure
۱- مدلینگ
۲- تحریکات فضایی بهینه تحریک مغناطیسی

پراکنده‌های مختلف تحریک (فکرسن، شدت میدان) در عمل مغناطیسی و غیره به دقت مورد بررسی قرار گرفته است. کننده علمی استفاده برای مطالعه اثرات عوامل متفاوت در برای مصرف و تشخیص هیپوک放大 به همراه اکتیویکوپلاریک و رفتاری تحقیق در مدل کننده‌ها اثرات قابل ملاحظه‌ای به‌دست آمده است. [۱۱] اعمال کننده های فیزیکی نیز مانند استفاده از میدان مغناطیسی ۵ هرتز، ناهنجاری ضعیفی را بر فراوانی تشخیص حاصل از کننده‌ها و تشخیص متفاوت بر اثر مغناطیس تحریک پذیر عصبی در حال تحقیق مشترک نشده است.

در این تحقیق اثرات دما در فکرسن‌های ۱/۵ و ۲ هرتز تحریک اثر مرکز میدان را در مقدار داده می‌باشد. همچنین نشان داد کننده‌های با اعمال شدت میدان ۴۰، ۷۰ و ۱۰۰٪ آسان‌تری حاصل در بررسی میزان اثر بررسی شد.

۲- مواد و روش‌ها

۲-۱ موارد مغناطیسی بهینه تحریک مغناطیسی

برای عملکرد تحریک مغناطیسی به‌کار بردن کننده‌های MAGSTIM RAPID و MAGSTIM RAPID که در بررسی اثرات اثرات قابل دقت مورد مطالعه شده است. [۱۱] в 포함

۱- Kindling
2-Motor Threshold
دانه. طول گاک سیم پیچ برای با L می‌باشد. با استفاده از ترم‌افزار MATLAB شبیه‌سازی شد. یک (3) میدان مغناطیس حاصل از عبور جریان در کولی، در فضای اطراف کولی با مختصات R با استفاده از قانون بلو-سوارانت بدست آمد (معادله (3)).

![شکل 2- مختصات فضای کولی در فضای پارامتریک](image)

در معادلات بالا، شعاع داخلي و شعاع خارجی کولی \(r_i \) و \(r_o \) می‌باشد. زاویه پیچی بردار مختصات نقطه مورد نظر و فاز اولیه \(\theta_0 \) می‌باشد. که برای \(\theta \geq 0 \) و برای اولیه با استفاده از تقارن موجود بین دو پایدار \(R_p(\theta) \) معادله 1 بدست می‌آید. با تقسم این دامنه پارامتر به فواصل کولیک معین \(i = 1, 2, 3, \ldots, N \) معین می‌شود سیم پیچ کولی به عنصر با طول کولیک تسمیم می‌شود که \(R_{p,i}(\theta) \) با استفاده از معادله 2 بدست می‌آید. این مجموعه بردارها زنتری کولی را در صفحه X-Y بیان می‌کند مختصات فضایی نقطه اتصال سیم پیچ در دو پایدار چپ و راست به صورت دستی به مجموعه نقاط زنتری کولی اضافه می‌شود. ساختار کولی به صورتی است که نقطه انتهایی یک با (بال چپ) به نقطه شروع (ابتدایی) بالا دیگر (بال راست) وصل می‌شود. بنابراین هر دو بال به‌صورت سری به یکدیگر متصل می‌شوند و یک مدار مسیر جریان پیوسته را تشکیل می‌کنند.

\[
B(R) = \frac{\eta_0 I}{4\pi} \int dl \times \frac{(R - R_p)}{|R - R_p|}
\]

\[
\Delta l_i = \frac{|R_{p+1} - R_p|}{|R_{p+1} - R_{p+1}|}
\]

\[
c = |R - R_p| - \hat{l}_i
\]

\[
b = -2(R - R_p) - \hat{l}_i
\]
متراسه برای کویل پروانه‌ای بیشینه میدان الکتریکی و نیز جریان الکتریکی القانی در راستای محور عمود بر محور کویل (محور Y) در شکل 4 می‌باشد.

\[
V \times E = -\frac{\partial B}{\partial t}
\]

با استفاده از مدل‌سازهای بالا مختصات تقیی نقطه‌ای (نسبت به کویل) که در آن میدان القانی در متراسه بیشینه می‌باشد را بدست آورده که با ثبت الکترون‌سازنوشته‌ها مختصات دقیق این نقطه بدست می‌آید.

از rTMS جهت فیکس کردن حیوان به هنگام اعمال تحریک کویل فیکس کننده از جنس شیشه‌زاره‌ای (بلکسی کلاسی) استفاده شد. جهت ثابت نمودن سر حیوان بر شهای خاصی روی فیکس کننده ایجاد شد تا حرکات سر حیوان به حداقل برسد (5).

به استفاده از نرم‌افزار MATLAB، میدان مغناطیسی در اطراف کویل با استفاده از فرمول (4) بدست‌آمد. شدت میدان در روز خطوط موازی محور X ها و در نقاط متغیر از سطح کویل (Z = 0) بدست‌آمد. با توجه به شکل بدست‌آمده میدان مغناطیسی در اطراف کویل پروانه‌ای در راستای محور موادی با صفحه کویل (محور X) در شکل 2 و در نقاط قطعی داخلي و خارجی ماکزیمم می‌باشد. همچنین شدت میدان مغناطیسی با افزایش فاصله از سطح کویل ایجاد شد (4). توسعه میدان اطراف کویل به شدت تابع شکل‌های فضایی و یا ماتریسهای فیزیکی کویل می‌باشد.

مدیان الکتریکی القانی ناشی از میدان مغناطیسی توسط ماعداله دوم ماکسول بدست می‌آید (معادله 5). شکل میدان القانی در
سر حیوان متصول می‌گردد و پوست سر در سمت پس سری بخیه زده می‌شود. پس از جراحی، یک هفته تا دو روز به حیوان جهت ترمیم زخم حضور داده می‌شود. برای تعبین شدت آستانه، ابتدا حیوان توسط جراحی با شدت 10 میکروآمپر تحریک می‌شود. اگر امواج نخله معنی‌دار 1 (حداقل به مدت 5 ثانیه) در الکتروانکرالگرام شنوی می‌شود، این شدت به عنوان شدت آستانه 3 در نظر گرفته می‌شود. در غیر این صورت هر 5 دقیقه یک بار شدت جریان 10 میکروآمپر افزایش می‌یابد تا اینکه امواج نخله معنی‌دار شدت گردد. پس از آن حیوان با شدت جریان آستانه هر 24 ساعت یکبار تحریک می‌شود تا کیندل شود. در این تحقیق مقدار زمان امواج نخله معنی‌دار 3 امواج نخله معنی‌دار تجمع 6 و مرحله نشان به اساس تقسیم‌بندی بعنوان کمیته‌ای مورد آنالیز استفاده شد [14].

2- After Discharge
3- Electroencephalogram
4- After Discharge Threshold
5- After Discharge Duration
6- Cumulative ADD
7- Seizure Stage

2- جراحی حیوان و تحریک الکتریکی

از موس حیوانات از نژاد Wistar با محدوده وزنی 250-300 گرم استفاده شد. دوره تاریخی و روشی 12 ساعته رعایت شد و غذا آزادانه در اختیار حیوان بود. برای پیش‌بینی، گاز (100) و واکسن (400) به صورت داخل صورت تزریق می‌شدند. از یک الکترود سطحی از جنس فولاد زنگ نزن با روپوش نقل‌برای نیت و تحریک و از دو الکترود نک قطعی مسی بعنوان زمین و تغییری استفاده شد. پس از فیکس کردن سر حیوان در دستگاه استریتکاسی (Narishige, Japan) و مشخص کردن نقطه برگ‌ها بر اساس اطلاع پاساژ و واتسون، مختصات نسبت آمیگال (میلی‌متر، A) Ap = +2/5، (میلی‌متر، V)AW = +4/5 و آمپرسانت سخت سخت‌شده (A) به ویژه (1-Bregma)
آزمایش‌ها

2-3-1- با استفاده از داده‌های مابین‌الکتروکاردیوگرافی (ECG) و مابین‌الکترونفروکتیوگرافی (NIRS) در حالت میان‌الکترونفروکتیوگرافی، نتایج بدست آمده از شبیه‌سازی MATLAB و بدست آمده از شیب‌سازی با MATLAB بهبود گزارش کیوری نیست، به دلیل اینکه داده‌های محاسباتی جمع‌آوری شده از داده‌های مابین‌الکتروکاردیوگرافی و مابین‌الکترونفروکتیوگرافی در لحظه‌های مختلف داده‌های تابعه‌ای متفاوت هستند.

با استفاده از اریکه‌ای‌ای محدود که از سطح جمع‌آوری داده‌ها و در زاویه 45 درجه نسبت به خط عمودی گی زیرگذر می‌باشد.

1-Analog to Digital
به طور عادی تحریک الکترینی کبدی‌لینگ شده و در نگهدارنده قرار گرفتند و پارامترهای کبدی‌لینگ مورد نظر در هر دو گروه ثبت شد. در هر گروه از شش موس انتقال داده‌گر را، تا روز آخر مطالعه، به اینکه اکثریت آماری معنی‌داری از آماره آزمون

با هم نداشتند از گروه کنترل اثر بعنوان گروه کنترل

در آنالیز آماری استفاده شد.

از چهره گروه آزمایشی برای بررسی اثر فرکانس تحریک در

ترجیح آمادگی استفاده شد. بایان ذرتی که هر روز از تحریک الکترینی با شدت استاندارد حداکثر 5 دقیقه پس از تحریک حیوانات را با در سیس کم اثر به‌هوله کرده و در نگهدارنده فیکس کرده و به مدت 5 دقیقه تحت تابش معنی‌دار مغناطیسی در مختصات فضایی از پیش تعیین شده قرار گرفتند. تمام حیوانات با شدت 80 آستانه حوزک

هر حیوان تحت نتاب مغناطیسی قرار گرفتند. پارامترهای تحریک

مغناطیسی فیکس و مدت زمان توسط پرت از نگهدارنده (Nihon Koden, SEN 720, Japan) استعمال گردید (جدول 1).

با توجه به اینکه تحریک‌های بی‌ثابت در تمام گروه‌ها به صورت درصدی از آستانه حوزک می‌شد. آستانه حوزک در هر حیوان به

بیش از 15 دقیقه داخل محله نگهدارنده قرار داده می‌شد تا

از استرس کاهش سطح محسوب شود و به محیط آزمایشی عادت کند. پس از 4

به 5 روز پس از قرار دادن حیوان در نگهدارنده، بترین شرایط

فیکس می‌شد. پس از فیکس سر حیوان کریز تحریکی روی

قشر حوزک عضلانی پشت آن تحول قرار داده می‌شد که ماکر کیمی

می‌دان عاملی در این قرار باشد. با شاییده پاتین و به صورت

پانچ تحریک حوزکی سطح و پاسخ اقیانسی عضلانی پشت حیوان

بررسی شد. شدت میزان را کن در خانه افزایش داده تا نقطه‌ای که

او وان اقیانسی عضلانی اندام پشتی حیوان مشاهده شود. این شدت

خوتوست با دقت 10% آستانه حوزک حیوان (در حالات

استراحت) در نظر گرفته می‌شد.

از دو گروه کنترل استفاده شد. در گروه اول حیوانات حداکثر 5

دقیقه پس از تحریک کبدی‌لینگ با در سیس کم اثر به‌هوش

شده و در نگهدارنده سر حیوان فیکس شده به مدت 5 دقیقه در

ابن گروه‌ها با گروه کنترل مقایسه گردید (جدول 1).

1- Resting Motor Threshold
2-Hind Limb area

82 / مجله فیزیک پزشکی ایران، دوره 4، شماره 16 و 17، پاییز و زمستان 86

شکل 1- بسته بندی دستکاری تنظیم سیستم تحریک استفاده شده.
امواج TMS بر روی مدل صرعی ناشی از کیندیلینگ

از آزمون تحلیل واریانس یک طرفه و آزمون پس از تجربه توکی statistics برای آنالیز آماری استفاده شد. برای مقایسه تعداد تحريك‌‌کات آزم برای ظهور مراحل یک یا پنج تنشی در گروه‌های آزمایش نسبت به گروه کنترل و مقایسه پارامترهای تشکیل دهنده نیز از آنالیز واریانس یک طرفه استفاده شد.

با اتمام آزمایشات مربوط به بررسی اثر فرکانس‌های مختلف، از دو گروه برای بررسی اثر شدت میدان مغناطیسی استفاده شد. بدینصورت که در فرکانس‌های تک‌هرتز با شدت‌های 90 و 100% آسانه حرکتی حیوان با همان پارامترهای فیزیکی تحريك‌یکسان تحريك شدند و نتایج بدست آمده از این گروه‌ها با گروه کنترل مقایسه گردید (جدول 1).

جدول 1- میانگین امواج تحلیل متعاقب در گروه‌های مختلف. داده‌ها بصورت میانگین ± پیش‌داشته شده‌اند.

<table>
<thead>
<tr>
<th>کنترل</th>
<th>20/20</th>
<th>20/20</th>
<th>30/20</th>
<th>30/20</th>
<th>40/20</th>
<th>40/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/07</td>
<td>7/07</td>
<td>7/07</td>
<td>7/07</td>
<td>7/07</td>
<td>7/07</td>
<td>7/07</td>
</tr>
<tr>
<td>8/08</td>
<td>8/08</td>
<td>8/08</td>
<td>8/08</td>
<td>8/08</td>
<td>8/08</td>
<td>8/08</td>
</tr>
<tr>
<td>11/12</td>
<td>11/12</td>
<td>11/12</td>
<td>11/12</td>
<td>11/12</td>
<td>11/12</td>
<td>11/12</td>
</tr>
<tr>
<td>10/7</td>
<td>10/7</td>
<td>10/7</td>
<td>10/7</td>
<td>10/7</td>
<td>10/7</td>
<td>10/7</td>
</tr>
<tr>
<td>14/18</td>
<td>14/18</td>
<td>14/18</td>
<td>14/18</td>
<td>14/18</td>
<td>14/18</td>
<td>14/18</td>
</tr>
<tr>
<td>20/18</td>
<td>20/18</td>
<td>20/18</td>
<td>20/18</td>
<td>20/18</td>
<td>20/18</td>
<td>20/18</td>
</tr>
<tr>
<td>21/18</td>
<td>21/18</td>
<td>21/18</td>
<td>21/18</td>
<td>21/18</td>
<td>21/18</td>
<td>21/18</td>
</tr>
<tr>
<td>24/6</td>
<td>24/6</td>
<td>24/6</td>
<td>24/6</td>
<td>24/6</td>
<td>24/6</td>
<td>24/6</td>
</tr>
<tr>
<td>26/7</td>
<td>26/7</td>
<td>26/7</td>
<td>26/7</td>
<td>26/7</td>
<td>26/7</td>
<td>26/7</td>
</tr>
<tr>
<td>28/7</td>
<td>28/7</td>
<td>28/7</td>
<td>28/7</td>
<td>28/7</td>
<td>28/7</td>
<td>28/7</td>
</tr>
<tr>
<td>30/13</td>
<td>30/13</td>
<td>30/13</td>
<td>30/13</td>
<td>30/13</td>
<td>30/13</td>
<td>30/13</td>
</tr>
<tr>
<td>40/5</td>
<td>40/5</td>
<td>40/5</td>
<td>40/5</td>
<td>40/5</td>
<td>40/5</td>
<td>40/5</td>
</tr>
<tr>
<td>45/2</td>
<td>45/2</td>
<td>45/2</td>
<td>45/2</td>
<td>45/2</td>
<td>45/2</td>
<td>45/2</td>
</tr>
<tr>
<td>50/4</td>
<td>50/4</td>
<td>50/4</td>
<td>50/4</td>
<td>50/4</td>
<td>50/4</td>
<td>50/4</td>
</tr>
<tr>
<td>55/3</td>
<td>55/3</td>
<td>55/3</td>
<td>55/3</td>
<td>55/3</td>
<td>55/3</td>
<td>55/3</td>
</tr>
<tr>
<td>60/2</td>
<td>60/2</td>
<td>60/2</td>
<td>60/2</td>
<td>60/2</td>
<td>60/2</td>
<td>60/2</td>
</tr>
<tr>
<td>65/1</td>
<td>65/1</td>
<td>65/1</td>
<td>65/1</td>
<td>65/1</td>
<td>65/1</td>
<td>65/1</td>
</tr>
<tr>
<td>70/0</td>
<td>70/0</td>
<td>70/0</td>
<td>70/0</td>
<td>70/0</td>
<td>70/0</td>
<td>70/0</td>
</tr>
<tr>
<td>75/5</td>
<td>75/5</td>
<td>75/5</td>
<td>75/5</td>
<td>75/5</td>
<td>75/5</td>
<td>75/5</td>
</tr>
<tr>
<td>80/0</td>
<td>80/0</td>
<td>80/0</td>
<td>80/0</td>
<td>80/0</td>
<td>80/0</td>
<td>80/0</td>
</tr>
<tr>
<td>85/0</td>
<td>85/0</td>
<td>85/0</td>
<td>85/0</td>
<td>85/0</td>
<td>85/0</td>
<td>85/0</td>
</tr>
<tr>
<td>90/0</td>
<td>90/0</td>
<td>90/0</td>
<td>90/0</td>
<td>90/0</td>
<td>90/0</td>
<td>90/0</td>
</tr>
<tr>
<td>95/0</td>
<td>95/0</td>
<td>95/0</td>
<td>95/0</td>
<td>95/0</td>
<td>95/0</td>
<td>95/0</td>
</tr>
<tr>
<td>100/0</td>
<td>100/0</td>
<td>100/0</td>
<td>100/0</td>
<td>100/0</td>
<td>100/0</td>
<td>100/0</td>
</tr>
</tbody>
</table>
3-1- درصد امواج تخليه تجمیعی
اموان تخليه تجمیعی در هر حیوان از روز اول تحریک تا روزی که در حیوانات گروه کنترل مرحله پنج تست بار انجام شده و برای اولین بار مشاهده می‌شود، روز دوازدهم، محاسبه می‌شود. برای هر گروه به صورت میانگین محاسبه شده. گروه اول درمانی با فرانکس یک هرتز و گروه کنترل اختلاف معنی‌داری با p<0/001 داشت. همچنین گروه با شدت 40/80 آستانه حرکتی اختلاف معنی‌داری داشت.

Şekil 7: درصد امواج تخليه تجمیعی در گروه‌های مختلف به صورت درصدی از مقدار مربوط به گروه کنترل. مقادیر به صورت میانگین ± حاصل معیار میانگین مشاهده می‌شود.

3-2- تعداد تحریک‌های لازم برای رسیدن به مراحل 1 تا 5 تست
3-2-1- مرحله اول: این کمیت بین گروه‌های درمانی و کنترل تفاوت معنی‌داری را با هم نشان نداد.
3-2-2- مرحله دوم: بین گروه‌های با فرانکس یک هرتز و آستانه ۸۰/۰ و گروه کنترل با p-value کوچک‌تر از ۰/۰۱ و برای گروه با فرانکس ۰/۰۵ (شدت ۸۰/۰) با p-value کوچک‌تر از ۰/۰۵/۰ و گروه کنترل اختلاف معنی‌داری را نشان داده است. گروه‌های دیگر اختلاف معنی‌داری را نشان ندادند. شکل (8).

84 / مجله فیزیک پزشکی ایران. شماره 4، شماره 16 و 17، 48 و وزمان 86
اموای تب روز مدل صرعی ناشی از کیندلینگ

اموای تب ۳-۲-۳

مرحله ۱-۲: مرحله پنجم: فرکانس ۰/۰۵ هرتز با گروه کنترل اختلاف معنی داری را نشان دادند (p<0/01 و p<0/00). (شکل ۸) گروه‌های درمانی با شدت ۹۰% و ۱۰۰% آستانه (فرکانس یک) با گروه کنترل اختلاف معنی داری را نشان دادند (p<0/01) و p<0/01. گروه‌های دیگر اختلاف معنی داری را نشان ندادند.

اموای تب ۳-۳

اموای تب در هر روز مخالفت متقابل در هر روز تا روز دوازدهم در تمام گروه‌ها مقایسه آماری شد. فرکانس یک هرتز با شدت ۸۰% و ۹۰%
با افزایش شدت به 100/آستانه حرکتی اثرات بیماری آن به طور محسوسی کاهش پیدا کرد. به نظر مرسد که آستانه حرکتی حیوان مقدار بحراری در بروز اثرات فروشانی فعالیت سیستم عصبی برای شدت‌های مختلف می‌باشد که این نتیجه نیاز به انجام آزمایشات یافته در شدت‌های بالای آستانه حرکتی براي بررسی این نظر به می‌باشد. با افزایش فرکانس تحریک از 0/5 به یک هرتس اثر فروشانی به طور محسوسی افزایش پیدا کرد. به

4- بحث و نتیجه‌گیری

نتایج این تحقیق نشان داد که rTMS در فروکسن‌های پیک و نیم هرتس باعث کاهش روند کیندی‌لینگ آمیگدام می‌شود که فرکانس یک هرتس اثر بهتری از خود نشان داده اثر برای برای فرکانس یک هرتس در شدت‌های مختلف نگیرد می‌کند با افزایش شدت به 90/آستانه حرکتی اثرات بیماری تا حدی افزایش پیدا کرده اما این افزایش اثر به صورت مظم نمی‌باشد و

86 / مجله فیزیک پزشکی ایران. دویمه 16 و 17. شماره 16 و 17. پاییز و زمستان 86
مطالعه حاضر متفاوت بود. با توجه به موارد بالا می‌توان ادعای
کرد که ناشی از rTMS باعث ترشح و افزایش غلظت مواد شبه
افیونی در مغز-خانه می‌شود. این مواد شبه افیونی
دارای خاصیت ضدنشانی می‌باشند و این افزایش غلظت آنها
می‌تواند با تیره‌ترین دقیق بعد از اتمام ناشی
به طول بکشاند [18]. در مورد مکانیسم‌های عمل این تکنیک نظری‌های
دبی گز در مورد دره زمان این کم‌درمانی عامل تحول
با زمان در بعضی فرکانسی شده و شدت اثر آزاد شدن
مافی مخاطب که سبب اعمال می‌شود [20،19،20]. از جمله
مکانیسم‌هایی که با استفاده از اثرات داروهای
rTMS ضد تشنج روی متغیرهای مختلف صرع و نیز در نمونه‌های سالم پیشنهاد شد. مدل‌سازی
کانال‌های فیونی ساده و جعری با ولتاژ [23-21 و نیز مدل‌سازی
در آزادسازی و یا ماه انقلاب دهنده‌های عصبی! وابسته به
نورولوگی رابط تغییر جهد و تغییر درکر خانعی [18-]
24] را می‌توان دوکرد. اما با دریافت این نمونه دقت تمام
خواص فیزیکی و فیزیولوژیکی این پانه از این تکنیک در
بافت مغز و نیز اثرات بین شبکه‌های مختلف مغز روی هم
مکانیسم‌هایی ایجاد شده می‌تواند این ناشی گریز در
مغز به طور دقیق معلوم نباشد و زومیت‌سازی‌ها و دقت پارامترهای فیزیکی
می‌شود. rTMS باعث ایجاد شده در بافت مغز و انجام آزمایشات در
سطح مولکولی بر روی روش شده این مکانیسم‌ها به چشم
می‌خورد. با توجه به مزیت‌های خوب این تکنیک بستگی اوردون
پارامترهای بهینه تحکیم برای درمان صرع در بیماری‌های
تواند کامی در جهت بالینی کردن این تکنیک باشد.
نظر می‌ردد که rTMS تحول بهتر مغز و تأثیر محسوسی روی مقدار اثر درمانی
دارد. اما روی منظومه بین افزایش (کاهش) فرکانس افزایش
(کاهش) اثر درمانی مشاهده نشد. می‌توان از فرکانس 1
به عنوان فرکانس بهتر در این محدوده فرکانسی (1/1 تا 2 هرثز)
و شدت (0/100% آستانه حرکت) نام برداشت. اگرچه در بعضی
مطالعات تأثیر فاکتورهای دیگر نظر می‌افزایش عامل تحول
و فرکانس‌های دیگر نیز رتبه اعمال تحولی فرکانس گزارش شدند
[15-17] که در این تحقیق مورد بررسی قرار نگرفتند. در
مطالعه‌های مقدماتی که توسط انسار و همکاران صورت گرفت,
فکرکانس یک هرثز اثر ضدنشانی دارد. در آزمایش مدل‌زدایی تزریق مغز‌خانعی
بر ایجاد فرکانس دیده شده را با افزایش
rTMS شکسته شده با داشت
بیماران افرادی ناشی شده با
rTMS یک هرثز هر ماحوری
همچنین مغز‌خانعی صحرا در آموزش کننده را با افزایش
rTMS هسته روز و به مدت 276 دقیقه در هر جلسه
بود. شدت تحکیم 90% آستانه حرکتی شکسته قبلاً. همین
بروتکل برای 120 هرثز نیز انجام گرفت. 20
قطر بالا هر فرد را به مدت 8 تا 10 دقیقه زمانی به طور
کلی راه ایجاد شده را با انجام آزمایشات 22 دقیقه نمونه شد. نتایج
نیاز داشت که فرکانس 10 هرثز بر خلاف فرکانس 1 هرثز
آستانه ضعیف را گزارش می‌دهند. نتایج آزمایش موجب است
نمایشگر این این گزارش یک هرثز هرثز شد. اگرچه
مدت زمان اعمال تحولی و نیز نیز پروتکل تزریق مغز‌خانعی
از نمونه ناشی دیده به نمود مورد آزمایش، با

2- neurotransmitter

1- Anschel et al

12. Psychiatric Neuroimaging Group at the University Hospital Bern. available from[online]: http://pni.unibe.ch/PNI/TMSgrafs.htm

