Mass Attenuation Coefficients of Human Body Organs using MCNPX Monte Carlo Code

Document Type: Original Paper

Authors

1 Uskudar University, Turkey

2 Karnatak University, Dharwad, India

3 Uskudar University, Vocational School of Health Services, Medical Imaging Department, İstanbul 34672, Turkey

4 Uskudar University, Medical Radiation Research Center (USMERA)

5 Department of Physics, Faculty of Science, University of Tabuk, Tabuk, KSA

Abstract

Introduction: Investigation of radiation interaction with living organs has always been a thrust area in medical and radiation physics. The investigated results are being used in medical physics for developing improved and sensitive techniques and minimizing radiation exposure. In this study, mass attenuation coefficients of different human organs and biological materials such as adipose, blood, bone, brain, eye lens, lung, muscle, skin, and tissue have been calculated.
Materials and Methods: In the present study, Monte Carlo N-Particle eXtended (MCNP-X) version 2.4.0 was used for determining mass attenuation coefficients, and the obtained results were compared with earlier investigations (using GEometry ANd Tracking [GEANT4] and FLUKA computer simulation packages) for blood, bone, lung, eye lens, adipose, tissue, muscle, brain, and skin materials at different energies.
Results: The results of this study showed that the obtained results from MCNP-X were in high accordance with the National Institute of Standards and Technology data.
Conclusion: Our findings would be beneficial for use of present simulation technique and mass attenuation coefficients for medical and radiation physics applications.

Keywords

Main Subjects


1.       Hongyu Chen, Melissa M. Rogalski, Jeffrey N. Anker. Advances in functional X-ray imaging techniques and contrast agents. Phys Chem Chem Phys. 2012 October 21; 14(39): 13469–86. DOI: 10.1039/C2CP41858D.

  1. V. P. Singh, N. M. Badiger. Photon interaction properties of some semiconductor detectors. Nuclear Reactor Technology. 2016; 27: 72 . DOI:10.1007/s41365-016-0076-8.
  2. V. P. Singh, N. M. Badiger. Energy absorption buildup factors. effective atomic numbers and air-kerma for human body parts, vitamins and tissue substitutes. J. Radioanalytical and Nuclear Chemistry.2015; 303 (3): 1983-90 .
  3. S. Mirji, N. M.badiger, S. S. Kulkarni, M. K. Tiwari. Measurement of linear attenuation coefficients of normal and malignant breast tissues using synchrotron radiation. X-Ray Spectrometry. 2016 May 1;45(3):185-9.. DOI: 10.1002/xrs.2685.
  4. Tomal A, Mazarro I, Kakuno EM, Poletti ME. Experimental determination of linear attenuation coefficient of normal, benign and malignant breast tissues. Radiat. Meas. 2010; 45: 1055–9 . DOI:10.1016/j.radmeas.2010.08.008.
  5. M. L.Taylor. Quantification of differences in the effective atomic numbers of healthy and cancerous tissues: a discussion in the context of diagnostics and dosimetry. Med Phys. 2012 Sep;39(9):5437-45. DOI: 10.1118/1.4742849.
  6. Singh VP, Badiger NM, Kucuk N. Assessment of methods for estimation of effective atomic numbers of common human organ and tissue substitutes: waxes, plastics and polymers. Radioprotection. 2014 Apr;49(2):115-21. DOI: 10.1051/radiopro/2013090.
  7. Singh VP, Badiger NM. Study of effective atomic numbers and electron densities, kerma of alcohols, phantom and human organs, and tissues substitutes. Nuclear Technology and Radiation Protection. 2013;28(2):137-45.
  8. Singh VP, Badiger NM. Effective atomic numbers of some tissue substitutes by different methods: a comparative study. Journal of Medical Physics/Association of Medical Physicists of India. 2014 Jan;39(1):24. DOI: 10.4103/0971-6203.125489.
  9. Singh VP, Badiger NM, Vega-Carrillo RH. Studies on neutron and photon kerma parameters for human body organs. Nuclear Technology and Radiation Protection. 2016;31(2):128-34. DOI: 10.2298/NTRP1602128S.
  10. Berger MJ, Hubbell JH. Photon Cross section on a Personal Computer (XCOM). Center for Radiation Research of Standards, MD. 1987;20899.
  11. Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F. GEANT4—a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003 Jul 1;506(3):250-303.
  12. Allison J, Amako K, Apostolakis J, Araujo HA, Dubois PA, Asai MA, Barrand GA, Capra RA, Chauvie SA, Chytracek RA, Cirrone GA. Geant4 developments and applications. IEEE Transactions on Nuclear Science. 2006 Feb;53(1):270-8. DOI: 10.1109/TNS.2006.869826.
  13. RSICC Computer Code Collection. MCNP-X User’s manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications. 2002. 
  14. Singh VP, Shirmardi SP, Medhat ME, Badiger NM. Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum. 2015 Sep 30; 119: 284-8. DOI: 10.1016/j.vacuum.2015.06.006.
  15. El-Khayatt AM, Ali AM, Singh VP, Badiger NM. Determination of mass attenuation coefficient of low-Z dosimetric materials. Radiation Effects and Defects in Solids. 2014 Dec 2; 169(12): 1038-44. DOI: 10.1080/10420150.2014.988626.
  16. Akar A, Baltaş H, Çevik U, Korkmaz F, Okumuşoğlu NT. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV c-ray energies. JQSRT . 2006 Nov 30;102(2):203-11.. DOI:10.1016/j.jqsrt.2006.02.007.
  17. Tekin H.O. MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 Inch NaI(Tl) Detector and Comparison with XCOM and Monte Carlo Data. Science and Technology of Nuclear Installations. 2016 Jul 31;2016. DOI: 10.1155/2016/6547318
  18. Akkurt I, Tekin H.O., Mesbahi A. Calculation of Detection Efficiency fort he Gamma Detector using MCNP-X” Acta Physica Polonica A. 2015 Aug 1;128(2):332-4. DOI:10.12693/APhysPolA.128.B-332.
  19. Tekin H.O, Kara U.  Monte Carlo Simulation for Distance and Absorbed Dose Calculations in a PET-CT Facility by using MCNP-X. Journal of Communication and Computer. 2016; (13): 32-5. DOI:10.17265/1548-7709/2016.01.005
  20. Tekin H.O, V. P. Singh, Kara U, Manici T, Altunsoy E.E. Investigation of Nanoparticle Effect on Radiation Shielding Property Using Monte Carlo Method. CBU Journal of Science. 2016;12(2). DOI: 10.18466/cbujos.15586
  21. Tekin H.O, Singh V.P, Manici T. An Investigation on Shielding effect of Bismuth on Lung CT Scan using Monte Carlo Simulation. Journal of Polytechnic. 2016; 19 (4): 617-20. DOI:10.2339/2016/19.4.617-622
  22. Tekin H.O., Singh V.P., Manici T. Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNP-X code. Applied Radiation and Isotopes. 2016. DOI: 10.1016/j.apradiso.2016.12.040.
  23. Tekin H.O, Manici, T. Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques. 2017;, 28: 95. DOI:10.1007/s41365-017-0253-4
  24. Jabbari I, Monadi S. Development and validation of MCNP-X-based Monte Carlo treatment plan verification system. J. Med. Phys. 2015; (40) : 80-9. DOI: 10.4103/0971-6203.158678.
  25. E. E. Ermis, F. B. Pilicer, E. Pilicer, C. Celiktas. A comprehensive study for mass attenuation coefficients of different parts of the human body through Monte Carlo methods. Nuclear Science and Techniques. 2016; 27:54. DOI: 10.1007/s41365-016-0053-2.