A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Fatemeh Moghbeli1, Mostafa Langarizadeh1*, Ali Yonesi2, Amir Reza Radmard3, Mohammad Sadegh Rahmanian4, Azam Orooji1

1. Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
2. Assistant Professor of Neuroscience, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
3. Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
4. Department of Health Information Management, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Faculty of Allied Medical Sciences Faculty of Allied Medical Sciences, Tehran, Iran

ABSTRACT

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen.

Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VAT was accomplished using a new level set method called distance regularized level set evolution (DRLSE). To evaluate the suggested method, the whole-body abdominal MRI was performed on 23 subjects, and three slices were selected for each case.

Results: The results of the automatic segmentation were compared with those of the manual segmentation and previous artificial intelligent methods. According to the results, there was a significant correlation between the automatic and manual segmentation results of VAT and SAT.

Conclusion: As the findings indicated, the suggested method improved detection of body fat. In this study, a fully automated abdominal adipose tissue segmentation algorithm was suggested, which used the SOM neural network and DRLSE level set algorithm. The proposed methodology was concluded to be accurate and robust with a significant advantage over the manual and previous segmentation methods in terms of speed and accuracy.

Introduction

The health practitioners universally acknowledge that excessive body fat is a serious health risk. Obesity is a risk factor for several chronic diseases, such as hypertension, hyperlipidemia, cardiovascular diseases, diabetes mellitus, gallbladder disease, respiratory failure, and a number of joint diseases [1, 2]. Moreover, according to the literature, the excessive accumulation of fat at particular parts of the body may be an important health risk factor [3]. Some other studies suggest that abdominal (body-center) fat pattern is more correlated with the metabolic risks associated with obesity than the gluteofemoral (peripheral) fat pattern.

These obesity problems have been attributed to an increase in visceral adipose tissue (VAT) and free fatty acid levels in the portal vein [4, 5]. According to several studies, VAT is responsible for the metabolic complications of obesity; furthermore, the subcutaneous adipose tissue (SAT) may contribute to the metabolic syndrome [6, 7]. Body composition can be evaluated through different methods ranging from field-based tests to advanced ones conducted in a clinical or laboratory setting by a professional technician.

The conventional methods of measuring the levels of adiposity include body mass index (BMI), waist circumference measurement, skinfold testing, bioelectrical impedance analysis, and BOD POD system (i.e., an Air Displacement Plethysmograph using whole body densitometry to characterize body composition [fat vs. lean]). The BOD POD is principally similar to underwater weighing and can measure body mass (weight) via a precise scale. The body
volume is also estimated by sitting inside this device. The body density can be calculated through the following equation: [8, 9]

\[\text{Density} = \frac{\text{Mass}}{\text{Volume}} \]

Materials and Methods

Subjects and Magnetic Resonance Imaging Protocol

A total of 23 unhealthy subjects, including 12 females and 11 males, with the age range of 45-63 years voluntarily participated in this study. The subjects underwent a whole abdomen on a 1.5T unit (Symphony, Siemens, Erlangen, Germany) using an 8-channel phased array body coil with a T1-weighted spin echo pulse sequence (TR=100-120 msec/echo, TE=4.8 msec (IP) and 2.4 msec (OP), flip angle=70°, slice thickness=8 mm). The field of view was 400 cm², the matrix was 256×160, and the imaging duration was 23 sec. Twenty axial slices were acquired from each subject covering the area from the lower lung to the level of L5/S1. The MR images were retrieved using the Digital Imaging and Communications in Medicine protocol.

Manual Image Segmentation

The manual segmentation of the MR images in all 23 subjects was performed by four experienced radiologists assessing the VAT and SAT compositions. Margins were drawn manually around SAT and VAT areas using a home-made software developed in MATLAB. The SAT and VAT areas were calculated through multiplying the pixel counts of segmented SAT and VAT by the MRI pixel area. The manual measurement of the fat deposits took approximately 10 min for each MRI slice in each subject. Because the process of manual segmentation was time-consuming, only slices in L4-L5, L3-L4, and L2-L3 levels were selected to be segmented manually. These segmented images were used as a gold standard for evaluating the automatic segmentation method.

Automated Image Segmentation

The standard sets of image processing tools, such as thresholding, morphological operations, intensity inhomogeneity correction, and level set algorithms, were used to perform the automated image analysis. The region growing algorithm was implemented in MATLAB via its image processing toolbox. The algorithm was designed with the aim of the robust segmentation of SAT and VAT without any user interaction during the execution of the algorithm. The segmented image data and area results were the output of the algorithm. The suggested automatic algorithm was based on the following six steps:

1. Intensity inhomogeneity correction
2. Body fat segmentation from background using SOM neural network
(3) Creation of the abdominal region of interest (ROI)
(4) Creation of SAT external wall mask using distance regularized level set evolution (DRLSE) algorithm
(5) Creation of SAT internal wall mask
(6) VAT and SAT identification

Each of these six steps is described in detail in the following subsections.

Intensity Inhomogeneity Correction

There are several sources of noise affecting MR images. Signal intensity inhomogeneity is one of these unavoidable artifacts also known as bias field. This artifact is mainly due to the inadequacies in the radiofrequency coils and object-dependent interactions [27-30]. Such intensity inhomogeneity is not a serious problem during clinical diagnosis and manual segmentation by radiologists. However, its associated impact can cause great difficulties for automatic intensity-based tissue classification methods.

Bias field artifact was observed in our acquired MR images. The technique chosen for removing the bias field effect was based on a solution proposed by Manjon et al. [31]. Figure 1 illustrates a slice in the presence of intensity inhomogeneity in the outer part of the SAT layer, along with its color map picture. Figure 2 depicts the same slice after performing the bias correction.

Body Fat Segmentation Using Self-Organizing Map Neural Network

Image segmentation can be performed through different techniques, which are mostly based on the discontinuity and similarity of the gray levels of an image. Artificial neural networks have been used in a variety of image processing applications. The SOM, usually known as Kohonen network, [32] is a computational technique that can visualize and analyze the high-dimensional data. The SOM can show a projection from a series of input data in a two-dimensional grid, and model \(m \) can be associated with each grid node (Figure 3).

These kinds of models are computed via SOM algorithm. A data item can be mapped onto the node having the most similar model to the data item, which has the shortest distance from the data item in some metrics. Although SOM is often used for reducing dimension, it has been also used for medical image segmentation [33]. The SOM neural network consists of two layers, the first and second layers of which include input neurons and output neurons (in form of two-dimensional grid view), respectively. Neurons in the input layer are connected to output layer neurons with an adjustable weight [34].

![Figure 1. Magnetic resonance slice affected by bias field (left), gray scaled color map for the image (right)](image1)

![Figure 2. Bias field corrected slice (left), gray scaled color map for the image (right)](image2)
In the SOM network, the most similar unit and winner neuron are determined by the minimum Euclidean distance to the input neurons. In this regard, \(x \) should be determined as the input vector and \(W_{ij} \) as the weight vector to the nodes. Input vector \(x \) is compared with all the weight vectors \((W) \). The best matching unit (BMU) or the winner node is determined by the smallest Euclidean distance \((d_{ij}) \) as shown in Equation 1:

\[
 d_{ij} = \min \| x(t) - W_{ij}(t) \|
\]

(1)

The modification of weight vector for the winner output neuron and its neighborhood neurons is calculated as:

\[
 W_{ij}(t+1) = W_{ij}(t) + \alpha(t) \left[x(t) - W_{ij}(t) \right] , \quad i \in N_c
\]

\[
 w_{ij}(t+1) = w_{ij}(t) , \quad i \notin N_c
\]

(2)

where \(t \) stands for time, \(\alpha \) is the gain sequence \((0<\alpha<1)\), and \(N_c \) is the neighborhood of the neuron.

The training algorithm for the SOM network was as follows:

1. Initialization of each node weights
2. Choosing a vector randomly from the input training data
3. Examining every node to determine the node weights with the most similarity to the input vector; the node whose weights have the smallest distance from the input vector is determined as the winning node or BMU
4. Calculating BMU neighborhood; the amount of neighborhood is decreasing over the time.
5. Updating the BMU and its neighborhood weight according to Equation 2.
6. If \(N_c \neq 0 \), then go to step 2.

Our SOM network for the MRI tissue segmentation had one neuron in the input layer and four neurons in the output layer in form of a 2×2 grid. The reason for selecting four neurons in the output layer was due to having four tissues in the T1-weighted input MRI, including air and water, bone marrow, fat, and muscles. We reshaped \(n \times m \) MRI image to \(1 \times (m \times n) \) matrix in order to send the image as the input signal to the network. Random pixels were selected from the image to be used in the network training process.

It has been observed that the use of only a small fraction of image pixels provides sufficient segmentation results. Therefore, in the training stage, a few image pixels were taken into account rather than taking all image pixels. When the training stage was over, we could use the network to segment the other remaining MR images. Figure 4 illustrates the input image (TAT mask [all voxels of the noise-masked fat-fraction map]) to the network and its segmentation result.

After the segmentation of the input image into its four areas, we needed to segment the TAT from the segmented image. The segmentation result indicated that TAT (white area) had the maximum number of pixels standing next to the air and water area (black). Therefore, the TAT could be segmented by the selection of the pixels having the second maximum value as their label. Figure 4 displays the segmented TAT.

Creation of the Abdominal Region of Interest

After the creation of the total abdominal tissue mask, we needed to identify the rectangular region of interest (ROI) only in the abdomen. This facilitated the reduction of the calculation time in the next steps by decreasing the number of pixels to be processed. The vertical and horizontal boundary detection is depicted in Figure 5. In order to obtain the ROI mask coordination, we could easily find the starting and ending points of each calculated sum plot. The obtained mask is displayed in Figure 6.
Creation of Subcutaneous Adipose Tissue External Wall Mask Using the Distance Regularized Level Set Evolution Algorithm

Level set methods have been widely used in capturing dynamic interfaces and shapes in images. Level set algorithm is based on representing a contour as the zero level set of a higher dimensional function called 'level set function', followed by formulating the motion of the contour as the evolution of the level set function \([36, 37]\). The main advantage of active contour models is their ability to represent complex topologies and handle topological changes. Active contour model was formulated in terms of a dynamic parametric contour as expressed in Equation 3:

\[
C(s,t) : [0,1] \times [0,\infty) \rightarrow \mathbb{R}^2 \tag{3}
\]

where the spatial parameter \(s\ (s\in[0, 1])\) parameterizes the points in the contour, and \(t\) is the temporal variable in \([0, \infty)\). The evolution of the curve was expressed in Equation 4.

\[
\frac{\partial C(s,t)}{\partial t} = F\mathcal{N} \tag{4}
\]

where \(F\) is the speed function, and \(\mathcal{N}\) is the internal normal vector to the curve \(C\).

The curve evolution in Equation 4 can be converted to a zero level set of time-dependent level set function as \(\varphi(x, y, t)\). The level set function of \(\varphi\) is assumed to get negative values inside the zero level set contour and positive values outside the contour. The internal normal vector of \(\mathcal{N}\) was expressed in Equation 5.

\[
\mathcal{N} = -\nabla \varphi / |\nabla \varphi| \tag{5}
\]

Finally, the curve equation in Equation 4 was converted to the following partial differential equation, called 'level set evolution' equation.

\[
\frac{\partial \varphi}{\partial t} = F|\nabla \varphi| \tag{6}
\]

In the conventional level set formulation described earlier, irregularities can rise in the level set function during its evolution causing numerical errors. This may finally destroy the stability of the evolution. Some numerical remedies to this problem have been proposed \([38, 39]\); nonetheless, they have their own problems, such as affecting numerical accuracy in an undesirable way.

Chunming et al. \([26]\) proposed a new variation of level set formulation in which the level set function regularity was essentially maintained during the level set evolution known as DRLSE. This suggested method does not have the previously mentioned numerical errors. We utilized DRLSE method to get the contour of the SAT outer wall (for more information about DRLSE method, refer to \([26]\)). We also implemented the DRLSE algorithm on the TAT mask with the required initial mask of rectangular...
ROI created from the previous step. Some of the DRLSE steps and the final contour of SAT outer wall mask are presented in Figure 7.

Figure 7. (A) Initial level set contour, (B) level set contour after 100 iterations, (C) final subcutaneous adipose tissue outer wall mask, (D) final level set function

Figure 8. A) Obtained non-fat mask, B) subcutaneous adipose tissue internal wall mask

Figure 9. A) Obtained subcutaneous adipose tissue mask, B) obtained visceral adipose tissue mask

Creation of Subcutaneous Adipose Tissue Internal Wall Mask

After the creation of the SAT outer wall mask, the SAT internal wall mask was created in order to identify SAT and VAT from the TAT. To this end, the non-fat tissue obtained from the TAT mask was created. Subsequently, the DRLSE algorithm was run on the obtained mask to get the SAT internal wall. To
create the non-fat tissue mask, we simply multiplied the mask of the SAT outer wall obtained from the previous step by the inverted TAT mask. The non-fat tissue mask and the SAT internal wall mask obtained from the DRLSE algorithm are demonstrated in Figure 8.

Identification of Visceral and Subcutaneous Adipose Tissues

To identify the SAT from the TAT mask, the obtained SAT internal wall mask was subtracted from the SAT outer wall mask created in step 4. The VAT mask could be obtained by subtracting the estimated SAT mask from the TAT mask. The equations used for the identification of SAT and VAT were as follows.

\[
\text{SAT} = \text{SAT}_{\text{outer wall}} - \text{SAT}_{\text{internal wall}}
\]

\[
\text{VAT} = \text{TAT} - \text{SAT}
\]

The obtained results are shown in Figure 9.

Results

In order to measure the effectiveness of the suggested method, the data acquired from the automatic segmentation were compared to the manual segmentation results performed by four experienced radiologists and other methods (Table 1). A total of 69 images, obtained from 23 subjects (each having three images), were segmented with both manual and automatic methods. The sum of VAT and SAT in three slices were calculated in both methods.

The correlation between the results of the automatic and manual segmentation for SAT and VAT was calculated. Regarding the SAT results, the two approaches showed a high correlation \((r=0.9082, P<0.001)\). There was also a high correlation between the two approaches in terms of the VAT results \((r=0.8988, P<0.001)\). The Bland-Altman plots for both VAT and SAT assessments are illustrated in Figure 10.

The SAT and VAT areas calculated using automatic method were slightly higher than those estimated manually. This was due to the fact that the operator usually dismisses very thin areas, especially in VAT, while the automatic method considers every pixel in an image for both tissues.

Discussion

This study revealed the possibility of performing fully automated segmentation of SAT and VAT from abdominal MR images. Unlike SAT, the segmentation of VAT is a difficult and less accurate task due to its complex structure. The segmentation process is usually performed in several steps each of which is related to the results of the previous steps. The bias correction step in our study is a critical stage that can affect the whole segmentation process. Therefore, we utilized a robust and accurate method proposed by Manjon et al. [31] to overcome this problem. This method fully corrected the bias field effect as presented in our data.

In the majority of the investigations, segmenting fat from T1-weighted MR images has been accomplished by thresholding or using fuzzy clustering method [10, 15, 17, 21, 43]. The main drawback of the thresholding method is its requirement for different thresholds and needing additional time to calculate the threshold for each slice. Fuzzy clustering method is also a robust technique in image segmentation, which is based on the similarities in pixel intensity. The main disadvantage of this method is that it needs to calculate the membership functions in every slice, which takes time similar to the thresholding method.

In our suggested method, we trained a SOM neural network for the first time, and then used the trained network to segment all the remaining slices. In this regard, we reduced the time needed to segment fat from other tissues. After distinguishing adipose tissue types by means of the suggested method via DRLSE level algorithm, a comparison was made between the manually segmented images and the automatically segmented ones. The areas calculated for VAT were significantly different from the manual SAT results due to the high precision of algorithm in counting every pixel of the VAT ignored in the manual segmentation.

<table>
<thead>
<tr>
<th>Row</th>
<th>Method</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Artificial Neural Network (ANN)</td>
<td>ANN solution for predicting Body Fat with accuracy 80.43%</td>
<td>[23]</td>
</tr>
<tr>
<td>2</td>
<td>Photoshop software and ANOVA correlation by SPSS</td>
<td>Correlation VAT: (r=0.753); required time: 6 min</td>
<td>[40]</td>
</tr>
<tr>
<td>3</td>
<td>Manual method</td>
<td>Correlation VAT: (r=0.784); required time: 2 h</td>
<td>[40]</td>
</tr>
<tr>
<td>4</td>
<td>Fuzzy clustering algorithm</td>
<td>Correlation VAT: (r=0.9601); required time: 6 min</td>
<td>[41]</td>
</tr>
<tr>
<td>5</td>
<td>Non-rigid registration</td>
<td>Correlation VAT: (r=0.7781); required time: 1 h</td>
<td>[42]</td>
</tr>
</tbody>
</table>
Conclusion

It can be concluded that the suggested method enhanced detection of body fat. In this study, a fully automated abdominal adipose tissue segmentation algorithm was suggested, which entailed the use of the SOM neural network and DRLSE level set algorithm. The proposed methodology was found to be precise and robust with a significant advantage over the manual segmentation and other methods in terms of speed and accuracy. This method allows for the segmentation of the whole abdominal fat in the MR images without any user interaction. It also provides useful clinical means for characterizing abdominal fat compositions.

References