Impact of Photon Spectra on the Sensitivity of Polymer Gel Dosimetry by X-Ray Computed Tomography

Document Type : Original Paper

Authors

1 Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, IRAN

2 Tabriz University of Medical Sciences

Abstract

Introduction: The purpose of the current study was to investigate the effect of X-ray spectra on the sensitivity of a polymer gel dosimeter imaged with a conventional computed tomography (CT) scanner.
Material and Methods: The whole process of CT imaging of an irradiated polymer gel was simulated by MCNPX Monte Carlo (MC) code. The imaging of polyacrylamide gel was accomplished by means of a conventional X-ray CT scan machine for different X-ray spectra, including mono-energetic beams and the spectra generated after passing through physical filters, including copper and tin. The MC-scored photon fluence inside simulated detectors was used to reconstruct the axial CT images by MATLAB software. The resultant images were used to derive the dose calibration curve of the gel for different spectra, based on which the highest sensitivity was selected.
Results: Among the calculated gel sensitivities for different beam spectra, the highest increase in average sensitivity was obtained as 23% for the 140 kVp spectrum with copper filter and copper+tin filter. However, the sensitivity of mono-energetic beams showed no considerable variation with the increase of energy from 30 to 140 keV.
Conclusion: As the findings indicated, the optimization of photon spectra by means of a physical filter could increase the sensitivity of polymer gels in gel dosimetry using CT imaging. 

Keywords

Main Subjects


  1.  

    References

     

    1. Gore JC, Kang YS, Schulz RJ. Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol. 1984;29:1189-97.
    2. Maryanski MJ, Gore JC, Kennan RP, Schulz RJ. NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging. 1993;11:253-8.
    3. Maryanski MJ, Schulz RJ, Ibbott GS, Gatenby JC, Xie J, Horton D, et al. Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol. 1994;39:1437-55.
    4. Olsson LE, Fransson A, Ericsson A, Mattsson S. MR imaging of absorbed dose distributions for radiotherapy using ferrous sulphate gels. Phys Med Biol. 1990;35:1623-31.
    5. Olsson LE, Petersson S, Ahlgren L, Mattsson S. Ferrous sulphate gels for determination of absorbed dose distributions using MRI technique: basic studies. Phys Med Biol. 1989;34:43-52.
    6. Ibbott GS, Maryanski MJ, Eastman P, Holcomb SD, Zhang Y, Avison RG, et al. Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters. Int J Radiat Oncol Biol Phys. 1997;38:1097-103.
    7. De DY, De WC, Van DB, Derycke S, De NW, Achten E. Three-dimensional dosimetry using polymer gel and magnetic resonance imaging applied to the verification of conformal radiation therapy in head-and-neck cancer. Radiother Oncol. 1998;48:283-91.
    8. De DY, De WC, Van DB, Derycke S, Mersseman B, De GW, et al. Validation of MR-based polymer gel dosimetry as a preclinical three-dimensional verification tool in conformal radiotherapy. Magn Reson Med. 2000;43:116-25.
    9. Maryanski MJ, Ibbott GS, Eastman P, Schulz RJ, Gore JC. Radiation therapy dosimetry using magnetic resonance imaging of polymer gels. Med Phys. 1996;23:699-705.
    10. De Deene. Fundamentals of MRI measurements for gel dosimetry. Phys:Conf ser. 2004;3:87-114.
    11. Gore JC, Ranade M, Maryanski MJ, Schulz RJ. Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner. Phys Med Biol. 1996;41:2695-704.
    12. Maryanski MJ, Zastavker YZ, Gore JC. Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: II. Optical properties of the BANG polymer gel. Phys Med Biol. 1996;41:2705-17.
    13. Hilts M, Audet C, Duzenli C, Jirasek A. Polymer gel dosimetry using x-ray computed tomography: a feasibility study. Phys Med Biol. 2000;45:2559-71.
    14. Trapp JV, Back SA, Lepage M, Michael G, Baldock C. An experimental study of the dose response of polymer gel dosimeters imaged with x-ray computed tomography. Phys Med Biol. 2001;46:2939-51.
    15. Hilts M, Duzenli C. Image filtering for improved dose resolution in CT polymer gel dosimetry. Med Phys. 2004;31:39-49.
    16. Audet C, Hilts M, Jirasek A, Duzenli C. CT gel dosimetry technique: comparison of a planned and measured 3D stereotactic dose volume. J Appl Clin Med Phys. 2002;3:110-8.
    17. Mesbahi A, Jafarzadeh V, Gharehaghaji N. Optical and NMR dose response of N-isopropylacrylamide normoxic polymer gel for radiation therapy dosimetry. Reports of Practical Oncology & Radiotherapy. 2012;17:146-50.
    18. Baldock C, De DY, Doran S, Ibbott G, Jirasek A, Lepage M, et al. Polymer gel dosimetry. Phys Med Biol. 2010;55:R1-63.
    19. Korreman SS. Semi- and virtual 3D dosimetry in clinical practice. Journal of Physics: Conference Series. 2013;444:012007.
    20. Hill B, Venning A, Baldock C. The dose response of normoxic polymer gel dosimeters measured using X-ray CT. Br J Radiol. 2005;78:623-30.
    21. Trapp JV, Michael G, De DY, Baldock C. Attenuation of diagnostic energy photons by polymer gel dosimeters. Phys Med Biol. 2002;47:4247-58.
    22. Brindha S, Venning AJ, Hill B, Baldock C. Experimental study of attenuation properties of normoxic polymer gel dosimeters. Phys Med Biol. 2004;49: 353-61.
    23. Hilts M, Jirasek A, Duzenli C. Technical considerations for implementation of x-ray CT polymer gel dosimetry. Phys Med Biol. 2005;50:1727-45.
    24. Hindmarsh J, Fulton R, Oliver L, Baldock C. Polymer gel dosimetry using x-ray computed tomography:investigation of the effect of reconstruction technique. Phys:Conf ser. 2010;250:012073.
    25. Jirasek A, Hilts M, McAuley KB. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry. Phys Med Biol. 2010;55:5269-81.
    26. Hilts M, Jirasek A, Duzenli C. Effects of gel composition on the radiation induced density change in PAG polymer gel dosimeters: a model and experimental investigations. Phys Med Biol. 2004;49:2477-90.
    27. Jirasek.A. Alternative imaging modalities for polymer gel dosimetry. Phys:Conf ser. 2010;250:012070.
    28. Ghavami SM, Mesbahi A, Pesianian I, Shafaee A, Aliparasti MR. Normoxic polymer gel dosimetry using less toxic monomer of N-isopropyl acrylamide and X-ray computed tomography for radiation therapy applications. Reports of Practical Oncology & Radiotherapy. 2010;15:172-5.
    29. Angel E, Yaghmai N, Jude CM, DeMarco JJ, Cagnon CH, Goldin JG, et al. Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT. Phys Med Biol. 2009;54:497-512.
    30. Aviles LP, Dance DR, Castellano IA, Vano E. Monte Carlo simulations in CT for the study of the surface air kerma and energy imparted to phantoms of varying size and position. Phys Med Biol. 2004;49:1439-54.
    31. Ay MR, Zaidi H. Development and validation of MCNP4C-based Monte Carlo simulator for fan- and cone-beam x-ray CT. Phys Med Biol. 2005;50:4863-85.
    32. Boone JM. Method for evaluating bow tie filter angle-dependent attenuation in CT: theory and simulation results. Med Phys. 2010;37:40-8.
    33. Duan X, Wang J, Yu L, Leng S, McCollough CH. CT scanner x-ray spectrum estimation from transmission measurements. Med Phys. 2011;38:993-7.
    34. Dutta J, Ahn S, Li Q. Quantitative statistical methods for image quality assessment. Theranostics. 2013;3:741-56.
    35. Hayati H, Mesbahi A, Nazarpoor M. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes. Radiological Physics and Technology. 2016;9:37-43.
    36. Ervin B.Podgorsak. Interactions of Photons with Matter; Radiation Physics for Medical Physiscists. SPRINGER. 2006.Mahdavi M, Hosseinnezhad M, Vahabi Moghaddam M. Determination of radiosensitive organs in head CT for the head area. Iranian Journal of Science and Technology (Sciences). 2015; 39(3.1):441-4.