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Introduction: Computed tomography dose index (CTDI) phantoms are used to optimize CT examinations in 
terms of image quality and the received dose. In this study, we aimed to develop cost-effective head CTDI 
phantoms from polyester-resin (PESR) materials as alternative phantoms. 
Material and Methods: The PESR was mixed with methyl ethyl ketone peroxide (MEKP) as a catalyst. The 
ratios of MEKP to PESR were 1:150, 1:200, 1:250, and 1:300, respectively. The phantom dimensions were 
designed similar to the standard CTDI phantom, i.e., length of 15 cm and diameter of 16 cm with five holes 
(diameter, 1.31 cm). The CTDI measurements using the PESR-MEKP phantoms were compared with the 
CTDI measurements using the standard polymethyl methacrylate (PMMA) phantom.  
Results: The results showed that the CTDI values of the PESR-MEKP phantoms were slightly higher (up to 
6%) than the standard PMMA phantom. It was found that the CTDI measured by the PESR-MEKP phantom 
with a ratio of 1:300 had the least significant difference from the standard PMMA phantom; also, at this 
ratio, the phantom was the most homogeneous. 
Conclusion: The head CTDI phantoms based on PESR-MEKP materials were developed and evaluated in 
this study. It was found that the PR-MEKP phantom with a MEKP-to-PESR ratio of 1:300 was 
insignificantly different from the standard PMMA phantom. Also, the phantom was constructed easily at a 
more reasonable cost, compared to the standard phantom. 
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Introduction 
Computed tomography (CT), as a complex imaging 

modality, produces excellent image quality within a 
short acquisition time at low cost [1–3]. CT scan is 
widely used for many clinical purposes [4–8]. 
However, the radiation dose of CT is relatively higher 
than that of other imaging modalities and may expose 
patients to a high risk of complications. Accordingly, 
regular CT dose monitoring is of great significance in 
medical practice [4, 9, 10]. In other words, CT dose 
measurement, as an integral part of quality control 
(QC) programs, must be carried out periodically [11].  

The radiation output of CT is obtained from the CT 
dosimetry and is specifically called the CT dose index 
(CTDI) [12, 13]. The CTDI, as a dose index, is useful for 
dose comparisons, dose monitoring, and dose 
optimization, while it does not represent the patient 
dose [14–16]. This index has several derivatives, 
including CTDIair, CTDI100, CTDI100,c, CTDI100,p, CTDIw, 
and CTDIvol [17]. Generally, for CTDI measurements, a 
standard phantom with a cylindrical shape (head and 
body phantom diameters, 16 cm and 32 cm, 
respectively), made of polymethyl methacrylate 
(PMMA) materials, is used [14, 18–20]. There are five 

holes inside these phantoms, used to insert a radiation 
detector and measure doses at different sites.  

The CTDI100 shows that the dose is measured using 
a detector with an active length of 100 mm. CTDI100,c 
and CTDI100,p represent measurements of CTDI100 in 
the central and peripheral holes of the reference 
phantom. Also, CTDIw represents a weighted dose 
measured from five holes, and CTDIvol represents the 
average dose in the entire phantom volume in a series 
of scans [5, 6, 9, 11, 18]. Evidence shows that the CTDI 
is strongly influenced by several input factors, 
including the tube voltage (kVp) and tube loading 
(mAs) [21].  

The CTDI measurements are carried out, using a 
pencil ionization chamber, a CT dose profiler, a 
thermoluminescence detector (TLD), or other types of 
detectors [22–24]. In the CTDIw measurements, the 
availability of CTDI phantom is essential [17]. On the 
other hand, the CTDIair measurements are conducted 
in air; therefore, the CTDI phantom is not required 
[18]. The availability of standard polymethyl 
methacrylate (PMMA) phantoms for CTDIw 
measurements may not be an issue in developed 
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countries. However, in some developing countries, 
such as Indonesia, it poses significant challenges, as 
PMMA phantoms may not be available due to their 
high cost. Almost half of CT centers in Indonesia do 
not have access to standard PMMA phantoms. 
Therefore, development of alternative phantoms with 
comparable dose results, using materials that are less 
expensive, easy to produce, and available in the 
market, would be very helpful. Also, development of 
alternative phantoms can help hospitals without 
access to standard PMMA phantoms to develop 
suitable physical phantoms for QC programs.  

An alternative phantom should have physical 
parameters, resembling the standard PMMA phantom. 
The physical parameters primarily include the 
material density and the effective atomic number (Zeff) 
[25, 26]. The PMMA density and Zeff are 1.19 g/cm3 
and 6.5, respectively [27]. Materials, such as high-
density polyethylene (HDPE), polystyrene, solid 
water, and acrylonitrile butadiene styrene (ABS), have 
densities of 0.95, 1.06, 1.04, and 1.04 g/cm3, 
respectively [1, 2, 28–30]; therefore, they may be used 
in the development of alternative CTDI phantoms. 

Resin materials are frequently used in daily life. 
These materials, with a density of 1.00 g/cm3, may be 
suitable for alternative CTDI phantoms. In previous 
study, they were used for simulating the human liver 
[31]. Besides non-toxicity, resin has high availability 
and scratch resistance [32]. There are generally two 
types of resins, that is, epoxy and polyester. The color 
of epoxy resin is clear yellow, whereas the polyester-
resin (PESR) is clear white. Also, PESR is easier to 
handle than the epoxy resin. Therefore, development 
of a CTDI phantom from PESR material will be useful. 
In our preliminary study on development of the CTDI 
phantoms based on PESR material [33], we 
investigated their CT number and compared them to 
those from standard PMMA phantom. We found that 
CT numbers of the PESR phantoms are 1-9% higher 
than those of PMMA phantom. Therefore, 
comprehensive study on CTDI values have not been 
carried out. Therefore, in this study, we aimed to 
develop a head CTDI phantom from PESR as an 
alternative to the standard PMMA phantom and 
investigate their CTDI values. The CTDI values of 
developed alternative phantom was compared with 
the standard PMMA phantom.  

 

Materials and Methods 
2.1. Fabrication of alternative CTDI phantoms 
The head CTDI phantoms were made from PESR 

(Yukalac 157 BQTN-EX, PT Justus Kimiaraya, 
Indonesia) and its catalyst. The chemical formula of 
PESR is OCO–CH2–CH2–COO–CH–CH–O. PESR is a 
type of unsaturated polyester, with viscosity of 250-350 
cP at 250°C, density of 1.09 g.cm

-3
, modulus elasticity 

of 3.3 GPa, and heat distortion temperature of 85°C 
[34]. MEKP (Mepoxe M, PT Justus Kimiaraya, 
Indonesia) was used as the catalyst in this study. The 

ratio of MEKP to PESR varied from 1:150 to 1:300. The 
PESR and the catalyst were manually mixed by stirring 
for two minutes, and high temperatures, which cause the 
phantom to break down after drying, were avoided. 
Afterward, the mixture was poured into a mold for 
several hours until it hardened at room temperature. The 
mold used in this study consisted of polyvinyl chloride 
(PVC) pipes (PT Wahana Duta Jaya Rucika, Jakarta, 
Indonesia), available in the market. The diameter and 
height of the pipe were 16 cm and 17 cm, respectively, 
as shown in Figure 1. Also, the holes in the phantoms 
were made through a drilling process. 

 

 
 
Figure 1. A PVC polymer used for molding the head phantom 

 

Phantom characteristics  
The head density of the PESR-MEKP phantom was 

measured by dividing the mass of the developed PESR-
MEKP phantom by its volume [35]. The mass of the 
PESR-MEKP phantom was measured using a digital 
scale, while its volume was calculated, based on the 
dimensions of the phantom. The electron density 
(number of electrons per gram) was calculated using the 
following equation [36, 37]: 

      ∑
    

  
                                             (1) 

 
where NA is the Avogadro’s number (6.022×10

23
), 

and fi, Zi, and Ai are the weight fraction, the atomic 
number, and the atomic mass of each atom, respectively. 

Moreover, the effective atomic number (Zeff) was 
calculated using the following equation [38]: 

     √∑    (  )
    

 
    

                (2) 

 
The phantom homogeneity was determined by 

conducting CT scans on the regions of interest (ROIs) at 
3, 6, 9, and 12 o’clock positions and at the center of the 
phantom with the same diameter (Figure 2). The 
homogeneity was calculated using the following 
equation [39]: 

  (  
|                         |

             
     )     (3) 
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Figure 2. The ROIs for CT number measurements. One ROI and four 
ROI holes can be found at the peripheries of the phantom 

 

CTDI100 measurements 
The CTDI100 measurements were performed on all 

holes of the PESR-MEKP phantom and the standard 
PMMA phantom (CIRS, USA) [24, 40, 41]. The 
measurements were carried out, using a Philips 
Brilliance 16-slice CT scanner, a CT dose profiler (RTI 
Electronics, Sweden), and a Black Piranha electrometer 
(RTI Electronics, Sweden). The CT dose profiler was a 
solid-state detector, specifically designed for CTDI 
measurements in a standard PMMA phantom. The CT 
dose profiler was connected to the fast Black Piranha 
electrometer, with a dose rate of 67 nGy/s to 2.2 Gy/s, 
spatial resolution of 0.25 mm, and inaccuracy of ±5% 
[42]. The CT dose profiler used the helical mode for 
measuring the CTDI. It was a small detector, capturing 
the point dose in real time. By using the helical scan, a 
dose profile along the Z-axis can be obtained. By 
integrating this dose profile, the integral dose can be 
obtained, as it is measured by a pencil chamber in the 
axial mode [43].  

For the scanning process, the phantom was placed on 
a table, and the center of the phantom was set at the 
isocenter (Figure 3). The phantom position was 
expected to remain unchanged during the scanning 
process. Next, topography was performed to determine 
the phantom position and the scanning length required. 
The scanning protocol included the head CT scan 
protocol with parameters shown in Table 1. Afterward, 
the CT dose profiler was inserted into a hole of the 
phantom, and the other holes were closed with acrylic 
rods. Then, the CT dose profiler was connected to the 
Black Piranha electrometer, and the electrometer was 
connected to a laptop to observe the results using the 
Ocean software [44]. 

 

CTDIw and CTDIvol calculations 
The weighted CTDI (CTDIw) was calculated by 

determining the weighted CTDI100 from five holes in the 
phantoms (Figure 3). The weighting process was carried 
out based on Equation (4):  

      
 

 
           

 

 
                                     (4) 

 

where           is the CTDI value measured in the 

center of the phantom; and           is the average of 

doses measured at the periphery of the phantom. By 
dividing CTDIw by pitch, the volumetric CTDI 
(CTDIvol) can be obtained. Also, pitch is a table shift 
divided by the total collimation [5, 9]. However, due to 
measurements in the helical mode, the pitch was 
automatically included in the obtained dose profiles.  
    

Percentage differences  
After obtaining the CTDIw and CTDIvol values, the 

percentage differences between the developed PESR-
MEKP phantoms and the standard PMMA phantom 
were determined, based on the following equation:  

            
   

 
                       (5) 

 
where A denotes the CTDI measured in the standard 

PMMA phantom, and B denotes the CTDI measured in 
the PESR-MEKP phantom [45]. 

 

P-value measurements 
To determine whether the developed PESR-MEKP 

phantom and the standard PMMA phantom are 
significantly different or not, a statistical test is needed. 
A t-test was used for this purpose, and P-value less than 
0.05 was considered statistically significant [46]. The 
statistical test was performed with Matlab R14 software 
(Mathworks Inc., Natick, MA, USA). 

  

 
 
Figure 3. The CTDI100 measurement using the PESR-MEKP phantom 
 
Table 1. Scan parameters of the head CTDI phantoms 
 

Scan parameter Setting 

Tube voltage (kVp) 120 

Tube current-rotation time (mAs) 200 

Mode Helical 

Pitch 1 

Slice thickness (mm) 5 

Total time (s) 11.463 
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Results 
Fabrication of PESR-MEKP phantom 

The alternative head CTDI phantoms, based on the 

PESR-MEKP material, were successfully developed, as 

shown in Figure 4. The phantoms were in a cylindrical 

shape and contained five holes with diameters of 1.31 

cm for dose measurements. The length and diameter of 

each phantom were 15 cm and 16 cm, respectively. The 

ratios of the catalyst (MEKP) to PESR were 1:150, 

1:200, 1:250, and 1:300, respectively. Visually, all 

phantoms were transparent.  

 

Density, electron density, and effective atomic number 

of the phantom 
After mass and volume measurements of the phantom, 

the density of the PESR-MEKP phantom was 

calculated. The masses were 3.268, 3.276, 3.214, and 

3.218 g for MEKP-to-PESR ratios of 1:150, 1:200, 

1:250, and 1:300, respectively. The masses of the head 

PESR-MEKP phantoms were almost the same, while the 

volume was 2.829 cm
3
. The overall density of the 

developed phantoms can be seen in Table 2. Also, the 

density of the standard head CTDI phantom, made of 

PMMA, was 1.19 g/cm
3
 [23]. Therefore, there are only 

slight differences in density between the standard 

PMMA phantom and the developed PESR-MEKP 

phantoms. 

The electron density and effective nuclear charge 

(Zeff) of PESR were 3.48×10
23

 electrons per gram and 

7.2, respectively, whereas the electron density and Zeff of 

PMMA were 3.45×10
23

 electrons per gram and 6.5, 

respectively. Therefore, the electron density and Zeff of 

PESR were comparable to the PMMA material. 

 

 
 
Figure 4. The developed PESR-MEKP phantoms with various MEKP-to-PESR ratios: (a) 1:150, (b) 1:200, (c) 1:250, and (d) 1:300 

   
Table 2. The densities of PESR-MEKP phantoms at various MEKP-to-PESR ratios and their percentage differences with the standard PMMA 
phantom 

MEKP-to-PESR ratio  Density (g/cm3) Percentage difference with the PMMA phantom (%) 

1:150 1.16 ± 0.01 2.93 

1:200 1.16 ± 0.01 2.69 

1:250 1.14 ± 0.01 4.53 

1:300 1.14 ± 0.00 4.41 

 

 
 

Figure 5. Images of phantoms: (a) Standard PMMA phantom; (b) PESR-MEKP phantom with a ratio of 1:150; (c) PESR-MEKP phantom with a 
ratio of 1:200; (d) PESR-MEKP phantom with a ratio of 1:250; and (e) PESR-MEKP phantom with a ratio of 1:300 
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Phantom images and homogeneity 

The images of the standard PMMA phantom and the 

PESR-MEKP phantoms, with MEKP-to-PESR ratios of 

1:150, 1:200, 1:250, and 1:300, are shown in Figure 5. It 

seems that all images of the PESR-MEKP phantom 

were similar to the standard PMMA phantom. The 

homogeneity of the developed PESR-MEKP phantoms, 

with MEKP-to-PESR ratios of 1:150, 1:200, 1:250, and 

1:300, is presented in Table 3. The homogeneity of the 

standard PMMA phantom reached 83.82%, which 

exceeded all PESR-MEKP phantoms. In the PESR-

MEKP phantoms, the lowest homogeneity was found at 

a ratio of 1:200, with a percentage difference of 9.00% 

with the standard PMMA phantom, while the greatest 

homogeneity was observed at a ratio of 1:300 (4.71%). 

 

CTDI100, CTDIw, and CTDIvol 

The CTDI100 values for each hole of the phantoms 

are presented in Table 4. It was found that the CTDI100 

and CTDIw values in the developed PESR-MEKP 

phantoms were slightly higher than those of the standard 

PMMA phantom, because the resin density was slightly 

smaller than the standard PMMA phantom (Table 2); 

therefore, less X-ray attenuation was observed [31]. The 

percentage differences in CTDI100 values between the 

PESR-MEKP phantoms with ratios of 1:150, 1:200, 

1:250, and 1:300 and the standard PMMA phantom are 

shown in Figure 6. The average differences in CTDI 

values between the standard PMMA phantom and the 

alternative PESR-MEKP phantoms with ratios of 1:150, 

1:200, 1:250, and 1:300 were 8.5%, 7.0%, 8.8%, and 

7.0%, respectively. P-value above 0.05 was only found 

in the PESR-MEKP phantom with a ratio of 1:300. In 

other words, the phantom with this ratio showed the 

greatest resemblance to the standard PMMA phantom.  

 
Table 3. The homogeneities of PESR-MEKP phantoms at various MEKP-to-PESR ratios and their percentage differences with the standard PMMA 

phantom 

MEKP-PESR Ratio Homogeneity (%) Percentage difference with the PMMA phantom (%) 

1:150 78.6 ± 0.5 6.2 ± 0.2 

1:200 76.3 ± 1.5 9.0 ± 0.2 

1:250 79.4 ± 1.0 5.3 ± 0.4 

1:300 79.9 ± 1.3 4.7 ± 0.3 

 
Table 4. The CTDI values of PMMA and the developed PESR-MEKP phantoms 

 

Parameters 
Dose (mGy) 

Standard 1:150 1:200 1:250 1:300 

CTDI100,c 

CTDI100,p at 3 o’clock 

CTDI100,p  at 6 o’clock 
CTDI100,p  at 9 o’clock 

CTDI100,p  at 12 o’clock 

CTDIw 
P-value 

26.14 ± 0.01 

23.64 ± 0.46 

24.95 ± 0.96 
27.74 ± 1.37 

25.29 ± 1.93 

25.65 ± 0.79 
- 

27.74 ± 0.13 

27.24 ± 0.65 

28.33 ± 2.40 
27.96 ± 1.02 

27.02 ± 1.79 

27.67 ± 1.02 
0.045 

26.97 ± 0.06 

27.66 ± 1.43 

26.54 ± 1.97 
28.09 ± 1.01 

27.16 ± 1.23 

27.23 ± 0.96 
0.015 

27.95 ± 0.02 

27.28 ± 0.14 

28.29 ± 0.45 
27.97 ± 1.34 

27.24 ± 0.64 

27.78 ± 0.44 
0.015 

26.60 ± 0.14 

27.29 ± 1.36 

28.47 ± 1.70 
27.84 ± 1.31 

24.39 ± 1.91 

26.87 ± 1.09 
0.200 

 

 
 

Figure 6. Percentage differences of CTDI100 values between the PMMA phantom and the developed PESR-MEKP phantoms at MEKP-to-PESR 

ratios of: (a) 1:150, (b) 1:200, (c) 1:250, and (d) 1:300 (detector inaccuracy, ±5%) 



    Rin Hafsahtul Asiah, et al.                                                                                                                         Head CTDI Phantoms Based on Polyester-Resin 
    

Iran J Med Phys, Vol. 18, No. 4, July 2021                                                                                260 

The CTDIw values for each phantom are shown in 

Figure 7. The CTDIvol values were equal to the CTDIw 

values, as the pitch value is one. The CTDIw values of 

the developed PESR-MEKP phantoms were slightly 

higher than that of the standard PMMA phantom, with 

percentage differences of 8%, 6%, 8%, and 5% for 

ratios of 1:150, 1:200, 1:250, and 1:300, respectively. 

The EKP-to-PESR ratio of 1:300 showed the smallest 

percentage difference with the standard PMMA 

phantom. 

 

 
Figure 7. The CTDIw values for the standard PMMA phantom and the 

developed PESR-MEKP phantoms 

 

Discussion 
The CTDI phantom is essential for CT dose 

measurements. However, the standard PMMA phantom 
may not be available in some CT centers in developing 
countries, as it is not cost-effective. Therefore, the 
development of alternative phantoms using cheaper 
materials can help hospitals monitor the CTDI of CT 
machines. In this study, alternative CTDI phantoms 
were designed from the PESR material and MEKP as a 
catalyst. The PESR material was selected, because its 
density and effective atomic number are relatively close 
to the standard PMMA phantom; it is also cost-effective 
and available in the market.  

The density of the alternative PESR-MEKP 
phantoms ranged from 1.14 to 1.16 g/cm

3
. Overall, the 

use of catalysts affects the phantom density. According 
to the results of the present study, the higher amount of 
MEKP as the catalyst leads to the greater density of the 
phantom. The density of the alternative phantom with a 
MEKP-to-PESR ratio of 1:200 showed the greatest 
resemblance to the standard PMMA phantom, with a 
percentage difference of 2.69%. The percentage 
differences of CTDI100 values between the PESR-MEKP 
phantoms and the standard PMMA phantom were 
measured in each phantom hole. The dose differences 
between the PESR-MEKP and PMMA phantoms were 
influenced by the phantom density and uncertainty of 
measurements. Based on the current results, the 
CTDI100,p value at the 9 o'clock position had the smallest 
percentage difference with the standard phantom, 
compared to the other holes. In contrast, the CTDI100,p 
value at the 6 o'clock position had the greatest 
percentage difference with the standard phantom, 
compared to the other holes; however, these differences 

were very small and within the measurement uncertainty 
range. 

The percentage differences of CTDIw values 
between the standard phantom and the PESR-MEKP 
phantoms with ratios of 1:150, 1:200, 1:250, and 1:300 
were 8%, 6%, 8%, and 5%, respectively (Figure 7). The 
smallest percentage difference was obtained at a ratio of 
1:300. Overall, the percentage differences were still 
considered acceptable, because the allowed percentage 
difference is ±20% [42]. Moreover, statistical t-test was 
carried out to determine significant differences. The P-
value for the PESR-MEKP phantom with a ratio of 
1:300 was above 0.05, indicating no significant 
difference with the standard PMMA phantom.  

In the process of phantom development, PESR was 
mixed with the catalyst as a hardener. For one phantom, 
the total required mass of PESR and catalyst was about 
3 kg, and PESR was widely available in the market at a 
price around $4 per kilogram; therefore, its cost is very 
low. Moreover, the development process is fairly 
simple, because it does not require any special tools, and 
the process is straightforward. Since our phantom is far 
cheaper than the standard PMMA phantom and has a 
simple and rapid manufacturing process, its 
development seems reasonable. However, it should be 
noted that this phantom is an in-house phantom, and 
repeatability is not guaranteed. Therefore, it is only 
suitable as an alternative when a standard phantom does 
not exist. 

Efforts have been made to develop in-house CTDI 
phantoms. In this regard, Akpochafor et al. [47] 
developed a CTDI phantom from PMMA, which could 
be filled with water. The phantom was validated with a 
standard phantom. Their results showed no significant 
difference in the average dose between the developed 
and standard phantoms (P=0.06). Also, the percentage 
difference of dose between the developed and standard 
phantoms was 19.8% [47]. However, the results of the 
current study are more acceptable than the mentioned 
study. 

In another study, Saravanakumar et al.  [23] 
developed in-house pediatric head and body CTDI 
phantoms, using PMMA materials. The percentage 
differences of CTDIvol between the artificial PMMA 
phantoms and the standard phantom were 16.62%, 
10.32%, 2.68%, and 1.42% for voltage variations of 70, 
80, 100, and 120 kVp, respectively [23]. Although this 
study reported better results for a tube voltage of 120 
kVp, compared to the current study, it should be noted 
that the phantom was composed of PMMA materials. In 
other words, the materials used in their phantoms and 
the standard phantom were the same. 

In the present study, the developed phantom was 
only a head phantom. However, a 1:300 composition is 
still applicable to other sizes of the phantom. In future 
studies, phantoms with a diameter of 32 cm can be 
developed for body measurements [23, 45]. Also, 
phantoms with various diameters for measuring the size-
specific dose estimates need to be developed [48]. 
Moreover, it is necessary to develop phantoms with 
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length variations for evaluating the equilibrium doses, as 
well as phantoms with different shapes for assessing the 
tube current modulation [16]. 

 

Conclusion 
The alternative head phantoms from the PESR-

MEKP material were successfully developed with 
varying ratios of 1:150 to 1:300. The PESR-MEKP 
phantom with a ratio of 1:300 showed an insignificant 
difference with the standard PMMA phantom. The 
difference with the standard PMMA phantom in terms 
of the CTDIw values was only 5%. Based on the present 
results, the PESR-MEKP phantom is cost-effective and 
easy to develop. Therefore, it may be useful for CT 
centers without access to standard PMMA phantoms for 
dose measurements. 
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