Dosimetric Comparison of Two Linear Accelerator-Based Radiosurgery Systems for Intracranial Tumours with Rapidarc and Dynamic Conformal Arc Therapy

Document Type : Original Paper


Department of Radiation Oncology and Neurosurgery, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Andheri, Mumbai, India.


Introduction: The present study focused on the dosimetric evaluation of Edge and Novalis Tx (NTx) linear accelerator (LA)-based radiosurgery system by using RapidArc (RA) and dynamic conformal arc (DCA) planning techniques.
Material and Methods: Forty patients with brain lesions of variable sizes (1.1-15.98 cc) were planned for Edge and NTx system by using the RA and DCA planning techniques on eclipse treatment planning system, version 13.6 (Varian Medical Systems, Palo Alto, CA, USA). All the plans were evaluated on the basis of paddick conformity index (PCI), homogeneity index (HI), and gradient index (GI). The maximum doses to organs at risk (OAR), V12Gy, V10Gy, and V5Gy for healthy brain tissue were also evaluated for all the plans. The treatment delivery efficiency for both systems was also evaluated.
Results: The mean PCI and GI for both RA and DCA plans were found to be better in Edge as compared to NTx system (PCI Edge, RA=0.77±0.1, PCI NTx, RA=0.66±0.11, PCI Edge, DCA= 0.69±0.12, PCI NTx,DCA= 0.67±0.12). Significant differences in HI, doses to OAR, and V12Gy, V10Gy, and V5Gy brain volume were observed for both systems with p-value less than 0.05. Reduced treatment time was observed in Edge LA as compared to NTx LA.
Conclusion: Edge LA produced clinically better target volume conformity, rapid dose fall-off, and reduced reduction in normal brain volume irradiation and treatment time compared to NTx. Thus, in the set of patient plans evaluated, it was noted that Edge stereotactic suite is more efficacious and diametrically suitable for intracranial radiosurgery.   


Main Subjects

  1. Wu A. Physics and dosimetry of the gamma knife. Neurosurg Clin N Am. 1992; 3:35–
  2. Lindquist C and Paddick I. The Leksell Gamma Knife Perfection and comparisons with its predecessors. Neurosurgery. 2008; 62:721–
  3. Novotny J, Bhatnagar JP, Niranjan A. Dosimetric comparison of the Leksell, Gamma Knife Perfexion and 4C. J Neurosurg. 2008; 109:8–
  4. Solberg TD, Boedeker KL, Fogg R, Selch MT, DeSalles AA. Dynamic arc radiosurgery field shaping: a comparison with static field conformal and noncoplanar circular arcs. Int J Radiat Oncol Biol Phys. 2001; 49:1481–
  5. Hazard L, Wang B, Skidmore T, Chern SS, Salter BJ, Jensen RL, et al. Conformity of LINAC-based stereotactic radiosurgery using dynamic conformal arcs and micro-multileaf collimator. Int J Radiat Oncol Biol Phys. 2009; 73:562–
  6. Benedict SH, Cardinale RM, Wu Q, Broaddus WC, Mohan R. Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation. Int J Radiat Oncol Biol Phys. 2001; 50:751–
  7. Lawson JD, Wang JZ, Nath SK,Rice R, Pawlicki T, Mundt AJ, et al. Intracranial application of IMRT based radiosurgery to treat multiple or large irregular lesions and verification of infra-red frameless localization system. J Neurooncol. 2010; 97:59–
  8. Wolff HA, Wagner DM, Christiansen H, Wagner DM, Christiansen H, Hess CF, et al. Single fraction radiosurgery using rapidArc for treatment of intracranial targets. Radiat Oncol. 2010; 5:77–
  9. Wang J, Pawlicki T, Rice R, Mundt AJ, Sandhu A, Lawson J, et al. Intensity-modulated radiosurgery with rapidarc for multiple brain metastases and comparison with static approach. Med Dosim. 2012; 37:31–
  10. Mayo C, Ding L, Addesa A, Kadish S, Fitzgerald TJ, Moser R. Initial experience with volumetric IMRT (RapidArc) for intracranial stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010; 78:1457–
  11. Kim J, Wen N, Jin JY, Walls N, Kim S,  Li H, et al. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J Appl Clin Med Phys. 2012; 13:3729.
  12. Gevaert T, Levivier M, Lacornerie T, Verellen D, Engels B, Reynaert N, et al. Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of arteriovenous malformations and acoustic neuromas. Radiother Oncol. 2013; 106:192–
  13. Kaul D, Badakhshi H, Gevaret T, Pasemann D, Budach V, Tuleasca C, et al. Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of meningioma. Acta Neurochir. 2015; 157:559–
  14. Ma L, Petti P, Wang B, Descovich M, Chuang C, Barani IJ, et al. Apparatus dependence of normal brain tissue dose in stereotactic radiosurgery for multiple brain metastases. J Neurosurg. 114:1580–
  15. Wen N, Li H, Song K, Karen CS, Qin Y,  Kim J,  et al. Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys. 2015; 16:125– 
  16. Infusino E. Clinical utility of RapidArc™ radiotherapy technology. Cancer Manag Res. 2015; 7:345–
  17. Teoh M, Clark CH, Wood K, Whitaker S, Nisbet A. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol. 2011; 84:967–
  18. Paddick I. A simple scoring ratio to index the conformity of radiosurgical, treatment plans. J Neurosurg. 2000; 93:219–
  19. Paddick I, Lippitz B. A simple dose gradient measurement tool to complement, the conformity index. J Neurosurg. 2006; 105:194–
  20. Cozzi L, Clivio A, Bauman G, Cora S, Nicolini G, Pellegrini R, et al. Comparison of advanced irradiation techniques with photons for benign intracranial tumours. Radiother Oncol. 2006; 80:268–
  21. Molinier J, Kerr C, Simeon S,Ailleres N, Charissoux M, Azria D, et al. Comparison of volumetric‐modulated arc therapy and dynamic conformal arc treatment planning for cranial stereotactic radiosurgery. J Appl Clin Med Phys. 2016;17: 92-101.
  22. Lagerwaard FJ, Meijer O, Hoorn VE, Verbakel WF, Slotman BJ, Senan S. Volumetric modulated arc radio‌therapy for vestibular schwannomas. Int J Radiat Oncol Biol Phys. 2009; 74:610–
  23. Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Physc. 1993; 27:1231-9.
  24. Kim Ji, Park JM, Park SY, Choi CH, Wu HG, Ye SJ. Assessment of potential jaw-tracking advantage using control point sequences of VMAT planning. J Appl Clin Med Phys. 2014; 15:160-8.
  25. Joy S, Starkschall G, Kry S, Salehpour M, White RA, Lin SH, et al. Dosimetric effects of jaw tracking in step-and-shoot intensity-modulated radiation therapy. J Appl Clin Med Phys. 2012; 13:136-45.
  26. Prendergast BM, Popple RA, Clark GM, Spencer SA, Guthrie B, Markert J, et al. Improved clinical efficiency in CNS stereotactic radiosurgery using a flattening filter free linear accelerator. J Radiosurg SBRT. 2011; 1:117–
  27. Kragl G, Baier F, Lutz S, Albrich D, Dalaryd M, Kroupa B, et al. Flattening filter free beams in SBRT and IMRT: dosimetric assessment of peripheral doses. Z Med Phys. 2011;21:91–
  28. Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011;6:48–
  29. Blonigen BJ, Steinmetz R, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010; 77:996–
  30. Mhatre V, Chaddha P, Kumar A, Talapatra K. Dosimetric Comparison of 6 MV Flattening Filter Free and 6 MV Stereotactic Radiosurgery Beam Using 4 Mm Conical Collimator for Trigeminal Neuralgia Radiosurgery. J RadiatProt Res. 2018; 43:107–
  31. Sharma S, Dongre P, Mhatre V, Malhotra H. Physical and dosimetric characteristic of high definition multileaf collimator for SRS and IMRT. J Appl Clin Med Phys. 2011;12:142–
  32. Keeling V, Algan O, Ahmad S, Sossain H. Dosimetric comparison of intracranial metastasis treatment using two radiosurgery systems: true beam STx with VMAT and Gamma Knife Model 4C. J Radiosurg SBRT. 2016; 4:235–
  33. Ma L, Nichol A, Hossain S, Wang B, Petti P, Vellani R, et al. Variable dose interplay effects across radiosurgical apparatus in treating multiple brain metastases. Int J Comput Assist Radiol Surgery. 2014; 9:1079-86.
  34. Thomas EM, Popple RA, Wu X,Clark GM, Markert JM, Guthrie BL, et al. Comparison of plan quality and delivery time between volumetric arc therapy (RapidArc) and Gamma Knife radiosurgery for multiple cranial metastases. Neurosurgery. 2014; 75:409–
  35. Abacioglu U, Ozen Z, Yilmaz M, Arifoglu A, Gunhan B, Kayalilar N,  et al. Critical appraisal of rapidarc radiosurgery with flattening filter free photon beams for benign brain lesions in comparison to GammaKnife: a treatment planning study. Radiat Oncol. 2014; 9:119-24.
  36. Ruschin M, Sahgal A, Iradji S, Soliman H, Leavens C, Lee Y. Investigation of two linear accelerator head designs for treating brain metastases with hypofractionated volumetric-modulated arc radiotherapy. Br J Radiol. 2016; 89:56-62.




Volume 18, Issue 5
September and October 2021
Pages 321-330
  • Receive Date: 22 April 2020
  • Revise Date: 13 July 2020
  • Accept Date: 04 August 2020
  • First Publish Date: 01 September 2021