Assessment of Internal and External Surrogates for Lung Stereotactic Body Radiation Therapy

Document Type : Original Paper


1 Faculty of Medicine, University of Paris-Saclay, 94276 Le Kremlin-Bicêtre, France. Department of Radiation Oncology, Tenon Hospital, 75020 Paris, France.

2 MATER Private Hospital, Physics department, Eccles Street, Dublin 7, Ireland.

3 Affidea, International Medical Centers, Center for Radiotherapy, 78000 Banja Luka, Bosnia and Herzegovina.

4 Faculty of Medicine, University of Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.


Introduction: In this study, we aimed to evaluate internal (lung, heart and diaphragm) and external (nine glass marbles) marker motion in correlation with lung tumor motion and determine potential surrogate for respiratory gating radiation therapy (RGRT) depending on tumor localization, upper lobe (UL) versus lower lobe (LL).
Material and Methods: We included 58 patients (34 male and 24 female) with small lung cancer (≤ 5cm), who underwent stereotactic body radiation therapy (SBRT). All patients were scanned and contoured in all ten phases (Varian Eclipse 13.7) after four-dimensional computed tomography simulation (4D-CT). The motions of internal and external markers were analyzed and correlated with tumor motion. Pearson correlation coefficient (PCC) was used to evaluate the correlation between internal and external marker motion and tumor motion.
Results: The median (range) values of tumor motion were 3.2 (0.6-11.0) and 8.6 (4.0-24.0) mm in the UL and LL, respectively. The median (range) values of organs motion and PCC comparing UL vs. LL were 2.0 (0.3-9.1) vs. 6.0 (2.8-13.9) mm and 0.46 (0.30-0.95) vs. 0.79 (0.50-0.94) for the lung, respectively, 11.9 (2.5-16.3) vs. 12.5 (5.0-22.5) mm and 0.68 (0.11-0.93) vs. 0.89 (0.30-0.99) for the diaphragm, respectively, and 3.9 (2.5-6.3) vs. 7.6 (4.5-8.6) mm and 0.49 (0.20-0.70) vs. 0.59 (0.36-0.83) for the heart, respectively. The external marker motion and correlation coefficient for UL and LL were 2.5 (0.9-7.4) vs. 2.3 (1.0-5.9) mm and 0.54 (0.09-0.96) vs. 0.73 (0.27-0.94), respectively.
Conclusion: Lung and diaphragm motion correlate better with tumor motion than the external marker. Diaphragm motion can be an excellent indicator for treatment based on RGRT.  


Main Subjects

  1. Giraud P, Elles S, Helfre S. Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiother Oncol. 2002 Jan;62(1):27-36.
  2. De Ruysscher D, Faivre-Finn C, Moeller D. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol. 2017 Jul;124(1):1-10.
  3. Goyal S, Kataria T. Image guidance in radiation therapy: techniques and applications. Radiol Res Pract. 2014;2014:705604.
  4. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, et al. The management of Respiratory Motion in Radiation Oncology report of AAPM Task Group 76. Med Phys. 2006 Oct;33(10):3874-900.
  5. Korreman SS. Image-guided radiotherapy and motion management in lung cancer. Br J Radiol. 2015 Jul;88(1051):20150100.
  6. Das SK, Ten Haken RK. Functional and Molecular Image Guidance in Radiotherapy Treatment Planning Optimization. Semin Radiat Oncol. 2011 Apr; 21(2): 111-8.
  7. Sterzing F, Engenhart-Cabillic R, Flentje M, Debus J. Image-Guided Radiotherapy. A New Dimension in Radiation Oncology. Dtsch Arztebl Int. 2011 Apr; 108(16):274-80.
  8. Jung IH, Song SY, Jung J. Clinical outcome of fiducial-less CyberKnife radiosurgery for stage I non-small cell lung cancer. Radiat Oncol J. 2015 Jun; 33(2):89-97.
  9. Kollmeier MA, Bochner B. Intravesical Fiducial Marker Placement to Facilitate Image-Guided Radiation Therapy for Patients With Muscle-Invasive Bladder Cancer. UroToday Int J. 2011 Feb; 4(1):art16.
  10. Schroeder C, Hejal R, Linden PA. Coil spring fiducial markers placed safely using navigation bronchoscopy in inoperable patients allows accurate delivery of CyberKnife stereotactic radiosurgery. J Thorac Cardiovasc Surg. 2010 Nov; 140(5):1137-42.
  11. Wanet M, Sterpin E, Janssens G, Delor A, Lee JA, Geets X. Validation of the mid-position strategy for lung tumors in helical TomoTherapy. Radiother Oncol. 2014;110(3):529-37.
  12. Hubie C, Shaw M, Bydder S, Lane J, Waters G, Mc Nabb M, et al. A rondomised comparison of three different immobilisation devices for thoracic and abdominal cancers. J Mec Radiat Sci. 2017 Jun; 64(2):90-6.
  13. Nankali S, Torshabi AE, Miandoab PS, Baghizadeh A. Investigation on Performance Accuracy of Different Surrogates in Real Time Tumor Tracking at External Beam Radiotherapy. Frontiers in Biomedical Technologies. 2015; 2(2):73-9.
  14. Vedam SS, Kini VR, Keall PJ, et al. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys. 2003 Apr; 30(4):505-13.
  15. Gierga DP, Brewer J, Sharp GC. The correlation between internal and external markers for abdominal tumors: Implications for respiratory gating. Int J Radiat Oncol Bio Phys. 2005; 61(5):1551-8.
  16. Lee SY, Lim S, Ma SY, Yu J. Gross tumor volume dependency on phase sorting methods of four-dimensional computed tomography images for lung cancer. Radiat Oncol J. 2017 Sep;35(3):274-80.
  17. Ablitt NA, Gao J, Keegan J, Stegger L, Firmin DN, Yang GZ. Predictive cardiac motion modeling and correction with partial least squares regression. IEEE Trans Med Imaging. 2004 Oct;23(10):1315-24.
  18. George R, Keall PJ, Kini VR. Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery. Med Phys. 2003 Apr;30(4):552-62.
  19. Wang X, Pan T, Pinnix C, Zhang SX. Cardiac motion during deep-inspiration breath-hold: implications for breast cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2012 Feb 1;82(2):708-14.
  20. Seppenwoolde Y, Shirato H, Kitamura K. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002 Jul 15;53(4):822-34.
  21. Radiation therapy oncology group. Atlases for organs at risk (OARs) in thoracic radiation therapy. 2011. available from:
  22. Wijenayake U, Park SY. Real-Time External Respiratory Motion Measuring Technique Using an RGB-D Camera and Principal Component Analysis. Sensors (Basel). 2017 Aug 9;17(8).
  23. Mageras GS, Pevsner A, Yorke ED. Measurement of lung tumor motion using respiration-correlated CT. Int J Radiat Oncol Biol Phys. 2004 Nov 1;60(3):933-41.
  24. Liu HH, Balter P, Tutt T. Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer. Int J Radiat Oncol Biol Phys. 2007;68(2):531–40.
  25. Ehrhardt J, Werner R, Schmidt-Richberg A, Handels H. Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration. IEEE Trans Med Imaging. 2011 Feb;30(2):251-65.
  26. Fayad H, Pan T, Clement JF, Visvikis D. Technical note: Correlation of respiratory motion between external patient surface and internal anatomical landmarks. Med Phys. 2011 Jun;38(6):3157-64.
  27. Weiss PH, Baker JM, Potchen EJ. Assessment of hepatic respiratory excursion. J Nucl Med. 1972 Oct;13(10):758-9.
  28. Korin HW, Ehman RL, Riederer SJ, Felmlee JP,Grimm RC. Respiratory kinematics of the upper abdominal organs: a quantitative study. Magn Reson Med 1992 Jan;23(1):172–8.
  29. Mageras G, Torke E, Rosenzweig KE. Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J Appl Clin Med Phys. 2001;2:191–200.
  30. Cervino LI, Chao AK, Sandhu A, Jiang SB. The diaphragm as an anatomic surrogate for lung tumor motion. Phys Med Biol. 2009 Jun 7;54(11):3529-41.
  31. Rasheed A, Jabbour SK1, Rosenberg S. Motion and volumetric change as demonstrated by 4DCT: The effects of abdominal compression on the GTV, lungs, and heart in lung cancer patients. Pract Radiat Oncol. 2016 Sep-Oct;6(5):352-9.
  32. De La Fuente Herman T, Vlachaki MT, Herman TS, Hibbitts K, Stoner JA, Ahmad S. Stereotactic body radiation therapy (SBRT) and respiratory gating in lung cancer: dosimetric and radiobiological considerations. J Appl Clin Med Phys. 2010 Jan 29;11(1):3133.
  33. Mani KR, Bhuiyan A, Alam M. Dosimetric comparison of deep inspiration breath hold and free breathing technique in stereotactic body radiotherapy for localized lung tumor using Flattening Filter Free beam. Polish Journal of Medical Physics and Engineering. 2018;24(1):15-24.
  34. Smith RL, Yang D, Lee A, Mayse ML, Low DA, Parikh PJ. The correlation of tissue motion within the lung: implications on fiducial based treatments.Med Phys. 2011 Nov;38(11):5992-7.
  35. Bhagat N, Fidelman N, Durack JC. Complications associated with the percutaneous insertion of fiducial markers in the thorax. Cardiovasc Intervent Radiol. 2010 Dec;33(6):1186-91.
  36. Dou TH, Thomas DH, O'Connell D, Bradley JD, Lamb JM, Low DA. Technical Note: Simulation of 4DCT tumor motion measurement errors. Med Phys. 2015;42(10):6084-9.
  37. Pathmanathan AU, van As NJ, Kerkmeijer LGW. Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A "Game Changer" for Prostate Treatment?. Int J Radiat Oncol Biol Phys. 2018;100(2):361-73.