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Introduction: One of the most important components in radiotherapy with external surrogates is utilizing 
consistent correlation model to estimate tumor location as model output on the basis of external markers 
motion dataset. In this study, imperialist competitive algorithm (ICA) was proposed to process and optimize 
motion dataset for correlation model. The simplicity of correlation model based on this algorithm may result 
in less targeting error with the least computational time. 
Material and Methods: A correlation model based on adaptive neuro-fuzzy inference system (ANFIS) was 
utilized with database of 20 patients treated with CyberKnife Synchrony system. In order to assess the effect 
of proposed data optimization algorithm, two strategies were considered. The correlation model was used 
with and without implementing ICA. Then, targeting error of ANFIS model was compared at two strategies 
using statistical analysis.  
Results: The results showed that implementing the proposed algorithm on ANFIS model could remarkably 
improve the performance accuracy of ANFIS correlation model by eliminating unnecessary and noisy inputs 
and making the model simpler. Moreover, model simplicity factor could highly reduce model computational 
time, which is attractive for clinical practice.  
Conclusion: ICA was proposed as data optimization algorithm on motion dataset of patients treated with 
external surrogates’ radiotherapy. Our proposed algorithm could highly optimize the input motion dataset of 
correlation model for estimating tumor position by selecting enough data points with high degree of 
importance. The final results showed an improvement of targeting accuracy of correlation model, as well as a 
significant reduction at model computational time.  
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Introduction 
One of the most important issues at external beam 

radiotherapy is delivering a prescribed 3D uniform 
dose to the target volume while minimizing damage to 
the nearby healthy tissue. This issue becomes more 
serious while tumor moves irregularly due to intra-
fractional motion mainly caused by breathing 
phenomenon in the thorax region of patient body [1]. 
From mathematical point of view, tumor motion can 
be in translation, rotation, deformation, separately or 
even in a combination of these dynamics modes [2-8]. 
In modern precise radiotherapy, several efforts have 
been proposed to manage the effect of motion error 
on treatment process known as breath-hold, motion-
gated radiotherapy, and real-time tumor tracking 
radiotherapy (RTRT) [4, 9-15]. The latter case is 
under research and other strategies are being 
clinically implemented. Breath holding is on the basis 
of patient cooperation and has some non-negligible 
errors during therapeutic beam irradiation. 

In motion-gated radiotherapy, tumor motion is 
monitored and target volume is irradiated in pre-

defined phase of breathing such as end of exhalation, 
while gate is activate in clinical application [4, 14, 16-
17]. External surrogates’ radiotherapy and 
fluoroscopy-based radiotherapy are two common 
treating systems against conventional radiotherapy 
that use additional hardware and software tools for 
tumor motion monitoring [18,19]. At external 
surrogate’s radiotherapy, external motion of thorax 
and abdomen regions and internal motion of tumor 
are gathered as external-internal datasets. Then, a 
correlation model is built using this dataset to 
correlate external thorax motion with tumor motion 
at pre-treatment phase few minutes before treatment. 
After model construction, it is ready to infer tumor 
motion as model output by means of external motion 
data points during treatment. Moreover, the 
correlation model performance is checked 
periodically during treatment and its parameters are 
updated by using new external-internal data point, 
taken by monitoring systems. It should be noted that 
external surrogates’ radiotherapy gives lower dose to 
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the patients that results lower side-effects according 
to the concept of As Low As Reasonably Achievable 
(ALARA) principle [20]. Several linear and non-linear 
correlation models have been proposed to estimate 
tumor position mathematically. Some of these models 
were taken into account in our previous studies 
considering their pros and cons, optimum location of 
external surrogates, and even using marker-less 
strategies comprehensively [21-28].  

Apart from the structure and robustness of each 
correlation model, its performance depends highly on 
the quality and quantity of external-internal dataset. 
This study aimed to assess the inherent properties of 
dataset responsible for model construction and model 
performance during treatment. To do this, a proper 
data selection algorithm was taken into account to 
yield an optimized correlation model for RTRT.  

In this study, we focused on adaptive neuro-fuzzy 
inference system (ANFIS) as correlation model since 
its abilities were proved in our previous studies. In 
fact, the reasoning capabilities of fuzzy inference 
systems and learning skills of neural networks are 
combined together in a unique system known as 
ANFIS [29-31]. 

The configuration and performance of ANFIS 
correlation model highly depends on the number and 
importance degree of data points as one member of 
external-internal dataset. Therefore, a data pre-
processing algorithm is required to select the 
optimum and useful dataset to find a compromise 
between model performance and its complexity 
caused by excessive number of inputs.  

An input selection algorithm would be beneficial to 
give optimum and useful data as input for our ANFIS 
model. Moreover, the simplicity of prediction model 
results in less computational time for model re-
construction during each update; therefore, tumor 
tracking is done in real-time mode that is highly 
necessary in clinical application.  

The purpose of this study, is design and 
implementing an optimization algorithm called 
imperialist competitive algorithm (ICA) to choose the 
best combination of inputs for each dataset. The 
selected inputs result in the least prediction error at 
the minimum run-time. ICA is an optimization 
algorithm which commences to work with an initial 
community of countries. These community individuals 
are divided into two categories, imperialists and 
colonies. The imperialists are countries which have 
the most power, the least cost, and can seize more 
colonies based on their power. In our optimization 
problem, imperialists are the combination of inputs 
that lead to lower errors of the correlation model. The 
rest of the countries (the colonies) and imperialists 
altogether shape empires. The contest among empires 
to seize more colonies is the basis of this algorithm. 
During the contest, the feebler empires collapse and 
their colonies seize by more powerful empires. Finally, 
the contest shapes a situation with only one empire in 

which the colonies and their imperialist have the same 
cost [32]. In this input selection problem, the last 
imperialist is the best combination of inputs suitable 
for proposed ANFIS model leading to the least 
targeting error. 

 

Materials and Methods 
Patients Group and Their Dataset 

In this study, we used motion dataset of real 20 
patients with tumors located at thorax region and move 
due to respiration. These patients were treated by 
CyberKnife Synchrony system (Accuray Inc., 
Sunnyvale, CA) at Georgetown University Medical 
Center (Washington, DC) [33-34]. In average, the 
dataset of each patient includes 100 samples (or data 
points); and 10 samples are gathered at pre-treatment 
step for correlation model construction and the rest of 
them are gathered during treatment for testing the 
accuracy of motion tracking and also model updating. 
Each sample is gathered instantly in the radiosurgery 
session, which includes the three-dimensional positions 
(x, y, z) of 1) three external surrogates as external 
dataset and 2) internal fiducial or implanted marker 
inside tumor volume representing tumor motion as 
internal dataset. 

External dataset is collected by detecting some 
optical markers (placed on a specific vest at the thorax 
region) using optical (infrared) tracking system. On the 
other hand, internal dataset is revealed through a fiducial 
marker implanted inside or near the tumor volume and 
registered by a stereoscopic X-ray imaging system. 
After external-internal motion dataset gathering, a 
typical prediction model is constructed and then used for 
real-time tumor motion tracking radiotherapy [33-37]. 
 

ANFIS Correlation Model  
The correlation model is configured using an 

external-internal training dataset gathered in the pre-
treatment step and then the tumor position can be 
predicted by means of external data as model input. It 
should be noted that the model can be re-configured 
regularly using new arrival synchronized external-
internal data points to check optimality of its 
performance during the treatment. The performance of 
common correlation models was considered as a 
comparative study in our recent works [21-24]. These 
models can be based on statistical and probabilistic 
methods, regression models, support vector machines 
[18-19], linear filters, adaptive filters, Kalman filters 
[21], artificial neural networks [21], fuzzy systems [21-
24], a combination of neural networks and fuzzy 
systems [23], and ANFISs [24].  

In this study, an ANFIS correlation model was 
chosen as the consistent correlation model due to its 
robustness proved in our previous study. The 
performance of this model is on the basis of fuzzy 
inference system in combination with an adaptive neural 
network [24].  

We used fuzzy logic toolbox of MATLAB Version 
2013b (The MathWorks Inc., Natick, MA) software to 
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build the ANFIS correlation model. Our proposed 
ANFIS, the fuzzy if-then rules are based on Sugeno’s 
type and the number of input membership function will 
be equal to the number of inputs [30] because the 
internal data belong to one fiducial marker with three 
dimensions; since ANFIS has three outputs, it has three 
output membership functions. Also, the number of 
chosen rules is equal to the number of inputs.  

 

ICA as Input Selector 
The external dataset is used as inputs for correlation 

model construction and performance. The number of 
inputs and the importance degree of each data point as 
input may affect the performance accuracy and 
computational time of correlation model. We therefore 
proposed implementing an input selection algorithm 
based on an optimization algorithm, called ICA, to 
choose the most effective and independent inputs for the 
correlation model. The selected inputs may lead to lower 
prediction errors and result in more concise and faster 
models. 

ICA is an optimization algorithm stimulated by 
contest among imperialists in the real world. This 
evolutionary algorithm commences to work with a basic 

community of countries popN
. The countries are var1 N  

arrays and characterize as
],...,,,[

var321 NppppCountry
. In the 

countries, the changeable values that must be optimized 

are 
],...,,,[

var321 Npppp
 and the dimension of the 

optimization dilemma is varN . By computing the cost 

function 
f

 for the changeable values, the cost of a 
country is obtained as follows: 

),...,,,()(cos
var321 Nppppfcountryft 

                            (1) 
 

This cost shows how much the answer is close to the 
expected answer. In an input selection problem, this 
expected answer is a combination of inputs that results 
in a model with minimum error. The countries in the 
community (or individuals) have two dissimilar classes: 
Imperialists, the best countries in the community which 
have the least cost, and colonies, the rest of the 
individuals. Imperialists and colonies altogether make 
empires. All the colonies of basic community are 
divided among the just noticed imperialists based on 
their power, which is very similar to the fitness value in 
Genetic Algorithm. Before defining the power of an 
imperialist, the normalized cost of an imperialist is 
introduced by: 

ni
i

n ccC  )(max
                                                          (2) 

 
where cn is the cost and Cn is the normalized cost of 

nth imperialist. Then, the normalized power of an 
imperialist is obtained by: 





N

i

i

n

imp

C

C

n
p

1                                                                         (3) 

In this equation, impN
 is the number of imperialists and 

Pn is the normalized power of the nth imperialist. 
After calculating the normalized power, the initial 

number of colonies obtained by the nth imperialist is 
equal to: 

}{.. colnn NproundCN                                              (4) 
 

where nCN ..  is the initial number of colonies obtained 

by the nth imperialist and colN  is the total number of 
colonies. 

Then, after the dividing, the assimilation by moving 
colonies toward their pertinent imperialist begins. Figure 
1 shows this movement; the colony progresses toward the 
imperialist x units.  

 

 
 

Figure 1. A direction with random deviation, the colony is approaching 
its imperialist. 

 
In this figure, x and θ are random numbers with 

arbitrary distribution. When a colony is approaching its 
imperialist, the colony can discover a situation with lower 
cost than the imperialist cost. In such a situation, the 
colony and the imperialist exchange their position with 
each other and the colony becomes the new imperialist of 
the empire. 

The power of the imperialist and a percentage of 
mean power of the colonies are the total power of an 
empire. This fact can be modeled by expressing the entire 
cost by: 

)]empire of coloniesmean[cost()ialistcost(imper.. nn  nCT

                                                                                      (5) 
 

where nCT ..  is the total cost of the nth imperialist and 


 is a positive value smaller than 1 (usually equal to 0.1). 

The heart of this algorithm is the imperialistic contest 
among empires to seize more colonies. In this contest, if 
an empire cannot succeed to increase its power, it will be 
removed from the contest. This imperialistic contest leads 
to boost the power of more powerful empires and to 
decrease the power of powerless empires. The powerless 
empires become weaker and weaker, and finally, they 
collapse. The assimilation of colonies into their 
imperialists, contest among empires, and the collapse 
process will result in a circumstance in which there is 
only one empire with similar cost and position to its 
colonies [32].  

The dataset has nine columns as inputs and the 
correlation model needs at least one input; so there are 
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129   or 511 different combinations of inputs. Only a 
few combinations of these 511 different combinations 
can minimize output Room Mean Square Error 
(RMSEs) of the ANFIS prediction model. In our 
optimization problem, ICA starts to work with an initial 
community of input combinations and it tries to find the 
best solution using a cost function, which is a very 
simple and fast ANFIS prediction model with similar 
characteristics to main prediction model. Finally, at the 
end of the algorithm, the only imperialist is the best 
solution or the best combination of inputs for the 
prediction model. 

Before the ANFIS prediction model start to work, in 
the pre-treatment step, the ICA input selector begins to 
find the best combination of inputs by using its 
intelligent search mechanism and with the help of the 
cost function. The different combinations of inputs are 
tested by applying them to the simple and fast ANFIS 
model (cost function), and finally, ICA finds the best 
combination.  

 

Study Plan  
In order to assess the effect of ICA on the 

performance accuracy of correlation model and hence 
treatment quality, two strategies were taken into 
account: firstly, the model was constructed to work and 
get update without implementing ICA (as conventional 
tumor tracking used at clinical practice); secondly, the 
same strategy was done but by implementing ICA on 
input dataset of correlation model (as optimized tumor 
tracking proposed in this work). Then, targeting 
accuracy error of ANFIS model at two mentioned 
strategies were compared using RMSE at Excel software 
environment (Microsoft Corporation).  

During the radiotherapy treatment course, the model 
output is checked intermittently using stereoscopic X-
ray imaging system. This system takes an image from 
the real position of internal fiducial representing tumor 
position and this data is compared with model output to 
realize that the model is predicting tumor position 
properly. Otherwise, tumor tracking and treatment 
process is stepped till model re-configuration again. 
This checking process is done every 1 to 5 minutes and 
new paired data point can be used for model 
reconstruction for better predicting. The most important 
issue during updating is the time required for model re-
building that must be in real time mode to prevent any 
possible interruption. It should be noted that 
computational time of model performance for tumor 
tracking is negligible. In this work, the computational 
time of reconstructing two ANFIS correlation models 
used at optimized tumor tracking versus conventional 
tumor tracking is compared relatively at the same 
condition by using an in-room computer system. This 
helps to realize the role of ICA on simplicity factor of 
correlation model that may improve the challenge of 
real-time mode at tumor motion tracking during 
treatment. Figure 2 shows the block diagram of ANFIS 
correlation model with ICA input selection algorithm. 

 

 
 

Figure 2. ANFIS correlation model with implementing ICA input 
selection algorithm 
 

Results 
At external surrogate’s radiotherapy, each 

correlation model gives the 3D position of tumor 

location with an acceptable spatial uncertainty error. In 

this work, we used RMSE statistical tool to show this 

uncertainty error at two conventional and optimized 

tumor tracking strategies. RMSE is calculated according 

to the following formula: 





N

i

iPA
N

RMSE i

1

2)(
1

                                                  (6) 

 

where N is the number of predicted samples, Ai is the 

ith actual output in the dataset, and Pi is the ith predicted 

output by the model. Our patient group included 10 

patients with normal respiration and 10 patients with 

erratic and abnormal respiration. 

Figures 3 and 4 show the RMSE of the proposed 

ANFIS model output over normal and erratic patients, 

respectively.  

As both figures show, error fluctuation (error bar) is 

increasing while RMSE increases, that results the 

number of data points is low, during model construction. 

Inversely, while these data points is highest, the RMSE 

of tumor tracking is minimum (case 1, at normal 

patients). It is important to note that ICA optimization 

does not always lead to better results. For example, the 

optimization by ICA to choose the best inputs for the 

cases of P9 and P10 among the erratic group led to 

higher RMSEs compared with the conventional strategy. 

This may be due to the inability of ICA to choose the 

best combination of inputs among numerous 

combinations. 

Figure 5 shows the average RMSEs over normal and 

erratic patients with and without implementing ICA. As 

seen in this figure, the optimized tumor tracking strategy 
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over normal cases has better improvement regarding 

erratic cases. 

 

 
 
Figure 3. Calculated RMSE of ANFIS correlation model, 

Conventional Tumor Tracking (CTT) and Optimized Tumor Tracking 

(OTT) strategies for normal cases (Pi is Patient number from i=1 to 
i=10 on X axis) 

 

 
 

Figure 4. Calculated RMSE of ANFIS correlation model, 

Conventional Tumor Tracking (CTT) and Optimized Tumor Tracking 
(OTT) strategies for erratic cases ((Pi is Patient number from i=1 to 

i=10 on X axis) 

 

 
 

Figure 5. Average RMSE over all normal and erratic cases using 
Conventional Tumor Tracking (CTT) and Optimized Tumor Tracking 

(OTT) strategies  

 

Moreover, the effect of ICA on the run-time factor 

has been considered. The results indicated a major run-

time reduction after implementing ICA over normal and 

erratic cases with 45% and 43% against conventional 

strategy, respectively.  

 

Discussion 
In this work, an input selection method based on 

ICA was considered to improve targeting accuracy of 
typical correlation model utilized at RTRT with external 
surrogates. ICA was assumed to process the input 
motion dataset for an ANFIS as a proved consistent 
correlation model. 

This algorithm makes better construction of ANFIS 
model at pre-treatment step, and therefore correlation 
between external surrogate’s motion and tumor motion 
is achieved accordingly. ICA causes proper simplicity of 
ANFIS correlation model using selected data points with 
the most important degree among total input dataset that 
are intensive for the same cases. Model simplicity 
causes tumor tracking in real-time mode that is highly 
necessary in clinical application. In this study, 10 
patients with normal breathing signals and 10 patients 
with erratic or abnormal breathing signals were used to 
provide required datasets for our proposed optimized 
strategy for tumor tracking. The final results showed 
that in 90% of total patients the proposed strategy could 
result in error reduction during tracking. In fact, ICA 
works by eliminating irrelevant unnecessary inputs and 
simplifies the correlation ANFIS model structure. 
Therefore, ICA is able to optimize the learning and 
reasoning parameters of ANFIS such as the number of 
membership functions and if-then rules.  

However, at two cases in the erratic group, the 
performance of ICA was not essentially successful. This 
may be due to the inherent characteristics of 
optimization algorithms and input dataset (mainly from 
quantity point of view) that does not lead to a better 
answer. However, by implementation of ICA, the 
RMSE of correlation model reduced by 36% for the 
normal cases and 13% for the erratic cases compared to 
the conventional fashion. Another advantage of 
employing ICA is the run time of model construction 
during treatment. If there are unnecessary inputs, the 
model would become more complex and the number of 
model parameters and run-time would increase, that is 
an issue in RTRT. As the results showed, ICA could 
significantly improve run time reduction over all 
patients dataset. 

 

Conclusion 
The ICA data optimization algorithm could 

significantly improve the performance accuracy of our 
correlation model used at external surrogates’ 
radiotherapy by eliminating unnecessary and noisy 
inputs and making the model simpler. Since a simpler 
model is more transparent and has fewer parameters, it 
may yield a lower run-time that is important at radiation 
treatment of dynamic tumors. Based on the results 
obtained in this study, the implementation of ICA 
optimization algorithm is promising for clinical 
application. Future studies may include the properties 
and behavior of other common available optimization 
algorithm on motion dataset processing at computer 
aided radiotherapy. 
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