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Introduction: Treatment planning systems use TG-43 dose calculation protocol for brachytherapy sources. 
Dose calculations based on TG-43 formalism do not correct the perturbations due to the presence of tissue 
inhomogeneity, applicators, and inter-seed effects. Inter-seed attenuation has an important effect on 
dosimetry in permanent implant brachytherapy. The aim of this study is to evaluate the inter-seed attenuation 
effect for I-125 permanent implants. Then, software was developed to find the real dose distribution for 
different combinations of sources.  
Material and Methods: In the first step, a hypothetical generic source model was designed based on the 
configurations of different commercial source types. MCNP5 Monte Carlo code was utilized to simulate the 
single active generic source at the center of the phantom, and an inactive placed at various positions inside 
the phantom. An algorithm was introduced using artificial neural network models that can estimate the dose 
distribution in presence of inactive sources.  
Results: The Monte Carlo calculation results showed that the dose distribution is affected by the inter-seed 
attenuation effect. Comparison of the artificial neural network results with the Monte Carlo simulation results 
show that the artificial neural networks can predict the inter-seed attenuation with acceptable accuracy. 
Comparison of the MC calculations, and the ANN output does not show statistically significant differences 
between the results (P value>0.95). 
Conclusion: Inter-seed effect is dependent on the distance between the seeds. Decreasing distances would 
cause more effect. According to the results, it seems that the artificial neural network can be used as a tool 
for correction of inter-seed attenuation effect in treatment planning systems.  
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Introduction 
Brachytherapy is one of the main effective 

radiation modalities used to treat various cancerous 
tissues such as the brain, head and neck, uterus, 
cervix, etc [1]. Irradiations from sealed radioactive 
sources can be applied with interstitial, intracavitary 
or surface mold modalities to deliver the prescribed 
dose near the sources in a tumor. Rapidly decreased 
dose after tumor, provides a local high dose region at 
the malignancies with normal tissue protection [2]. 
Based on the required dose values, various types of 
brachytherapy methods including permanent or 
temporal source implants are available to choose with 
suitable dose rates for the transmission of the 
irradiations [3]. The treatment planning scope is 
providing an optimal dose distribution for the tumor 
and sufficient protection at normal tissues. 
Achievement of this purpose requires an accurate 
dose calculation formalism that considers the real 
treatment conditions. However, most commercial 
treatment planning systems perform the dosimetry 
calculations based on the recommendation of the 
American Association of Physics in Medicine Task 

Group No. 43 (AAPM TG-43). AAPM TG-43 uses a 
simple water phantom without any corrections for 
scattering and absorption effects of the incident 
photons on applicators, sources and tissue 
inhomogeneities. AAPM TG-43 recommends a 
superposition method based on the summation of all 
single source dose distribution, each calculated 
separately. Hence, dosimetry for different 
combinations of several sources (multi-seed implants) 
in brachytherapy can be significantly affected by the 
attenuations due to the presence of other seeds. 
Ignorance of the inter-seed attenuations and source 
self-absorption effects that make a lowered accuracy 
in dose calculations has more serious effects in 
permanent implants with low energy applications. 
Low energy sources because of needing less shielding; 
and those with a short half-life for their biologic 
advantages make them a suitable selection to use as 
permanent implants in brachytherapy. I-125 with a 
half-life of 59.4 days and weighting mean photon 
energy 28.37 Kev, is a common source in permanent 
interstitial implants [2, 4, 5]. There are several studies, 
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on evaluation of the attenuations due to the sources 
and especially their shields. Sina et al. in a Monte Carlo 
(MC) simulation for low dose rate (LDR) Cs-137 
(model Selectron), investigated a correction factor to 
introduce the applicator shielding effects on TG-43 
dosimetric parameters [6]. Additionally, a correction 
factor for dosimetric differences in various tissues 
related to the water was produced [7]. Meigooni et al. 
have performed a dosimetry investigation on 
interstitial brachytherapy sources based on AAPM TG-
43 recommendations. They considered two linear 
configuration multi-seed plans with three seeds in 
longitudinal and transverse planes. I-125 6702 and I-
125 6711 model sources were selected for each one. 
Their results demonstrated a mean reduction of 6% 
for the sum of doses from individual sources. 
Estimations that were found with different values in 
longitudinal and transverse planes were validated 
with TLD measurements [8].  In another study, Mason 
et al. considered the effects due to inhomogeneous 
tissues and inter-seed attenuation and scatter for I-
125 seeds in prostate implant brachytherapy. The 
required corrections were evaluated based on dose-
volume histogram (DVH) analysis. Uncertainties were 
less than 0.5% for patients without calcification and 
up to 4% for those with calcification [9]. An algorithm 
to determine the inter-seed attenuation in LDR 
brachytherapy is presented by Safigholi et al. [10]. 

In recent years, artifitial neural networks, and 
deep learning have been proposed by different 
investigators in different fields of medical 
physics[11,15]. It has been shown that the deep 
learning can be used in brachytherapy dosimetry, and 
treatment planning. Accurate dosimetry can be 
performed close to those of the MC algorithm, but 
with much faster computation times [13-15]. 

The purpose of this study is to evaluate the 
application of artificial neural networks in evaluating, 
and correcting of the inter-seed attenuation effect in 
treatment planning systems. The investigation was 
performed for permanent brachytherapy implants by 
presenting a hypothetical generic source model using 
MC simulation and an artificial neural network.  

 

Materials and Methods 
This study was performed in three main steps including 
1) the geometry and materials in different I-125 source 
types were compared to introduce a generic seed model. 
This generic model is a hypothetical I-125 source that is 
representative of other sources. By defining this generic 
model, we don’t have to repeat the simulations for all I-
125 seed models. 2) The generic model was used to 
investigate the inter-seed attenuation effect. 3) The dose 
estimation software was created using artificial neural 
networks. The steps are spaciously described in the 
following sections. 

  

 

 

 

Defining a generic source model 
The geometry and composition of different 
commercially available I-125 sources (see Table 1) were 
used to define a generic source Model. The designed 
generic model was then used as a hypothetical 125I 
source in Monte Carlo simulations; thus, we didn’t have 
to simulate each individual sourced model. Mean 
dimensions and most frequently used materials were 
utilized for introducing two generic models. The dose 
distribution around the generic sources was compared 
with commercially available sources to choose one 
generic model as I-125 seed. 

 

MCNP5 simulation for evaluation of the inter-seed 

effect 
Monte Carlo N-Particle MCNP5 code was used for the 
investigation of the dose distribution around the I-125 
generic seed. To evaluate the dose distributions, as 
shown in figure 1, a cubical soft tissue phantom (ρ=1.04 
g/cm3) with the dimension of 8×8×8 cm3 was simulated 
inside a sphere of air (ρ=1.00121 g/cm3 and radius of 7 
cm). The active source was placed at the center of the 
phantom.  

 
Figure 1. The simulated phantom 

 
The dosimetry parameters of the generic seed model 
were obtained based on the updated TG-43 report (TG-
43U1) [6]. MCNP5 simulation was performed with 109 
particles to assess the absorbed dose inside the cubical 
phantom in mesh tally cells. The MCNP simulation 
results showed the relative error of less than 1% for each 
tally cell. The dose at different points was obtained by 
the production of *FMESH4 tally and appropriate mass 
absorption coefficient. Dose distribution plots were 
provided using MATLAB software from a data matrix 
involving 99×99×99 small cubes (0.8 mm resolution). 
Then an inactive generic source was assumed at the 
various distances and angles from the active generic 
source. Active source located at the center of the 
phantom (x=0, y=0, z=0). 15 dwell positions for inactive 
sources were considered to evaluate the inter-seed 
attenuation effect for different usual distances within the 
treatment volume in permanent implant brachytherapy. 
Inactive sources were simulated as parallel with the 
active source axis. Figure 2 shows an examined manner 
with the inactive source at point (0.58 cm, 0cm, 0cm).   
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Table 1. The characteristics of different commercial I-125 seed models  
 

I-125 
source 
type 
 

Marker 
substance* 

 

Marker 
dimension 
(mm) 

Shape of 
source 
absorbent 
marker 

Capsule 
end 
thickness 
(mm) 

Capsule 
wall 
thickness 
(mm) 

Capsule 
substance 

Active 
length 
(mm) 

Capsule 
width 
(mm) 

Capsule 
length 
(mm) 

6702 Resin d=0.6 3 spheres 0.4 0.05 Titanium 3.30 0.8 4.5 

6711 Silver 
L=3  
 d=0.5 

1 cylinder 0.4 0.05 Titanium 2.80 0.8 4.5 

IS-12501 Resin d=0.6 5 spheres 0.4 0.05 Titanium 3.40 0.8 4.5 

SL-
125SL-
125 

Resin d=0.5 5 spheres 0.3 0.05 Titanium 3 0.8 4.5 

MED 
3631 

Resin d=0.5 4 spheres 0.15 0.05 Titanium 4.2 0.8 4.5 

Best 
2301 

Tungsten 
 

L=3.95 
d=0.25 

1 cylinder 0.05 0.1 Titanium 3.95 0.8 5 

I25.SO6 

Gold marker 
+ 
Ceramic 
coating 

L=3.5  
(Ceramic 
D=0.6) 
(gold marker: 
d=0.17) 
 

1 cylinder 0.4 0.05 Titanium 3.5 0.8 4.5 

DraxIma
ge LS-1 

Resin d=0.5 2 spheres 0.05 0.1 Titanium 4.1 0.8 4.5 

STM125
1 

Gold core 
+ 
Aluminum 
layer 

L=3.81 
(Alumin wire 
D=0.5) 
d=0.36 

1 cylinder 0.13 0.08 Titanium 3.8 0.8 4.5 

3500 

Silver core  
+ 
Quartz tube 
 

L=3.76  
(Quartz tube: 
D=0.64) 
(Silver 
marker: 
d=0.406) 

cylinder 0.2 5 0.05 Titanium 3.76 0.8 4.5 

 
*  L is the length of marker (for cylindrical markers), d is the diameter of markers (for cylindrical, and spherical markers), and D is the external 
diameter of the layer, covering the marker for some cylindrical markers. 

 

Artificial neural network for prediction of the inter-

seed effect  
A neural network model tries to produce an 
electronically computational method based on the 
biological behavior patterns of the human brain neural 
system [16]. In the last step, a method was developed 
for correcting the inter-seed effect using an artificial 
neural network. For this purpose, the Artificial Neural 
Network Toolbox of MATLAB 2014a software was 
used. Levenburg-Marquardt backpropagation algorithm 
was employed, and mean-Square Error was used for 
obtaining the accuracy of the model, and the reliability 
was tested using regression. 
As stated in the previous section, the dose distribution in 
presence of inactive seeds located at different positions 
was obtained using MCNP5 Monte Carlo simulation. 
The position of the inactive seeds relative to the active 
one, and the dose distribution around the source was 
inserted to train the network.  
The input data matrix was restricted to the first quarter 
of the plane including a 2D 50×50 portion. To shorten 
the computational process, the input matrix was reduced 
by the elimination of secondary rows and columns (a 
25×25 matrix for each source position, 15×625=9375 
data cell in each input matrix). Network results will be 
true for the same target and inputs in the other quarters. 
 

 
 
Figure 2. Dwell positions for the active source (red color for the active 
region) and inactive source 
  

Results 
Generic seed definition 

Proposed generic models are introduced as in Table 2. 

The properties were defined based on the dimension, 

geometry and shape of the commercially available seeds 

shown in Table 1. These two generic source models are 

only different in their marker substances. To choose the 

appropriate marker substance between Resin and Tungsten, 

a dosimetry study was performed by MCNP5 simulation. 

The dose distribution around the generic sources was 

compared with the dose around each source model. 
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Table 2. Two generic seed models defined in this study 
 

 
Marker 
substance* 

 

Marker 
dimension 

(mm) 

Shape of 

source 

absorbent 
marker 

Capsule end 
thickness 

(mm) 

Capsule 

wall 

thickness 
(mm) 

Capsule 

substance 

Active 
length 

(mm) 

Capsule 
width 

(mm) 

Capsule 
length 

(mm) 

Generic 

seed #1 
Resin L=3.6 & d=0.5 cylinder 0.25 0.06 Titanium 3.6 0.8 4.6 

Generic 

seed #2 
Tungsten L=3.6 & d=0.5 cylinder 0.25 0.06 Titanium 3.6 0.8 4.6 

*  L is the length of marker, d is the diameter of markers. 

 

According to the results, the minimum deviation in 

dosimetry parameters of the real commercial seeds and the 

generic sources was observed in the case of resin marker. 

Therefore, generic seed #1 was used for the following steps 

of this study, as the representative generic seed model. The 

dose distribution around this generic source model is 

shown in figure 3. 

 

 
 

Figure 3. The dose distribution around the generic source model 

 

MCNP5 simulation for evaluation of the inter-seed effect 

At the next step of the evaluations, the dose distribution 

around the active source affected by the inactive one was 

investigated. Dose distribution were considered for inactive 

source positioned at the points of (x(cm), y(cm), z(cm)): 

(0.58, 0, 0), (1.58, 0, 0), (3.58, 0, 0), (0, 0, 1), (0.58, 0, 1), 

(1.58, 0, 1), (3.58, 0, 1), (0.58, 0, 2), (1.58, 0, 2), (3.58, 0, 

2), (0.58, 0, 3), (1.58, 0, 3), (3.58, 0, 3), while the active 

one is at point (0,0,0). Figure 4 shows the obtained results 

about the effects of inactive pellets located at different 

distances on the dose distribution around the active seed.  

As seen in figure 4, the shielding effect of the 

secondary source has clearly had the attenuating effect. 

This effect is observed as dependent on the distance 

between both sources.  The inter-seed effect increases by 

decreasing the distance between the active seed and the 

inactive one. Therefore, it seems that precise dosimetry will 

not be performed by ignoring the inter-seed attenuation 

effect. 

 

 

Prediction of the dose distribution using ANN 

The artificial neural networks were used for obtaining 

the dose distribution around the seeds in the presence of 

different inactive source positions.  

First, a network was created for the input matrix of 

inactive source positions and the output matrix of dose 

values.  

A regression plot was used to check how well the input 

and output network data are fitted. In this study, 60 percent 

of the provided data were used for training, and 40 percent 

of the data were used for testing the network. Regression 

plot for the train, and test datasets of this network is shown 

in Figures 5a, and 5b. Figure 5c shows the regression plot 

for all the data. From these graphs, one can observe that the 

data sets used for training and testing the network are 

properly fitted to the lines, which approves the accuracy of 

the network results. Such plots can be used for predicting 

the output for every other input data. As shown in the 

figure, an accurate method with good agreement between 

the value obtained with the trained artificial neural network 

and the true values are obtained. Additionally, the network 

performance curve shows an acceptable difference with the 

best training performance (Figure 6). 

 

Validation of the artificial neural network model was 

performed by comparing the dose distributions around the 

source obtained by the model with the Monte Carlo 

simulations. Comparison was first performed for 13 

inactive source positions that were considered to generate 

the network. Figure 7a, exhibits the isodose curves for the 

plan with the inactive source placed at (1.58cm, 0cm, 0cm). 

Based on the results, for all given positions, the model is 

highly consistent with the MC calculations with provided 

percentage differences of less than 1%.     

The artificial neural network must be validated for 

every possible position of the inactive source. Thus, 

comparisons were repeated for the other positions than 

those used in network production. For our example inputs, 

MC simulation was performed for the inactive source 

positions (1.75cm, 0cm, 2.5cm) and (0cm, 0cm, 1.5cm), 

then the network was examined to find the dose 

distributions. Figure 8 shows the obtained isodose curves. 

The consequence percentage differences are also plotted in 

figure 9. 
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Figure 4. The dose distribution around the centered active source with the presence of inactive source at the points a: (1.58cm, 0cm, 0cm), b: (0.58cm, 0cm, 

1cm), c: (0cm, 0cm, 2cm) and d: (3.08cm, 0cm, 2cm) 

 

 
 

Figure 5. Regression between the first network results and MC calculations, a) for the training b) for testing, and c) for validation data 

 

 

 
 
Figure 6. Performance curve of the created network, the mean square error for the training, and testing set for different epoches 
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Figure 7. a) Dose distribution in X-Z coordinate (1.58cm, 0cm, 0cm); b) percentage Difference between Monte Carlo simulation and artificial neural network 

model; for the plan with inactive source position 

 

 
 
Figure 8. The dose distributions, in X-Z coordinate, produced by MC simulation and artificial neural network model for two cases with inactive source 

positions at a: (1.75cm, 0cm, 2.5cm) and b: (0cm, 0cm, 1.5cm) 

 

 
 

Figure 9. Percentage difference for artificial neural network model related to MC simulation for the plan with inactive source positions at a: (1.75cm, 0cm, 

2.5cm) and b: (0cm, 0cm, 1.5cm) 

 

According to the results shown in Figure 9 observed for 

both inactive seed positions, the percentage differences 

were not much greater than about 3% in all dosimetry 

points. The statistical analysis of the values obtained by the 

MC results, and the ANN are similar, P value>0.95. This 

shows accurate estimations around the active source in 

multi-seed implants for every other point of tissue that was 

not used in the artificial neural network generation process. 

In real treatment situations, there are several active 

sources, causing the inter-seed attenuation. Therefore, the 

ability of the neural network for prediction of dose 

distribution around a source with several other dummy 

seeds around itself was examined too. The active source is 

located at (0cm, 0cm, 0cm), and three dummy pellets were 

positioned at (1.58cm, 0cm, 3cm), (3.08cm, 0cm, 2cm), 

and (3.08cm, 0cm, 0cm). Figure 10 compares the predicted 

dose distribution, with the MC simulations that the results 

have shown again that the neural network was able to 

predict the inter-seed effect with less than 2% deviation. 
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Therefore, the validated method was developed for the 

prediction of dose distribution in real brachytherapy 

treatments contained using several active seeds. This model 

produces the dose distribution around each active source by 

TG-43U1 formalism. Then the dose distribution is 

corrected for the inter-seed effect using the trained 

network. Finally, the corrected dosimetry is performed by 

the superposition of the dose around each source. Figure 11 

shows the neural network training window. 

  

 
 

Figure 10. The dose distribution in X-Z coordinate, produced by MC 
simulation and artificial neural network model for the plan with inactive 

source positions at (1.58cm, 0cm, 3cm), (3.08cm, 0cm, 2cm), and (3.08cm, 

0cm, 0cm) 

 

 
 
Figure 11. Neural network training window 

 

 
 

Discussion 
In low energy photon emitting brachytherapy 

sources, ignoring inter-seed effect would cause 
significant errors in dose calculations, especially when 
high atomic number materials are used in the 
brachytherapy seed structure.  This is because the 
photoelectric effect is dominant in low energy photon 
range for which the cross-section varies as Z4 , where Z 
is the effective atomic number of the material. In this 
study, artificial neural networks were applied for the 
evaluation and prediction of the dose distribution around 
low energy brachytherapy sources. MCNP5 Monte 
Carlo simulations were employed to produce a 
dosimetry dataset as the required initial data for machine 
learning. The ability of artificial neural networks in 
predicting the inter-seed effect was then evaluated. 
According to the results of this study, the ANN is 
capable of finding dose plots for inputs including 
cartesian coordinates (x, y, z) of the active seed dwell 
positions. The results of this investigation indicate that 
dose distribution around active sources will be affected 
by the presence of the other sources. The effects are 
highly dependent on the secondary source position 
relative to the considered active source. The greater 
inter-seed attenuation effect is found for the seeds 
located near each other. These corrections that were 
evaluated in two-dimensional plots, can be also done in 
three-dimensional dose distributions as well as 
optimized source localizations.   

 Some high-Z materials are used in the construction 
of brachytherapy seeds, therefore the dose distribution 
around the low-energy seeds is affected significantly in 
presence of other brachytherapy seeds. The dosimetry 
calculations based on AAPM TG-43 formalism which 
uses the superposition principle, and ignore the inter-
seed attenuation effects, can produce significant 
uncertainty in dose distribution around the sources. 
Most treatment planning systems use the TG-43 
formalism, and the inter-seed effect is ignored. 
Meigooni et al 1992, found that the average value of the 
inter-seed effect was 6% for I-125 seeds, with a 
maximum of 12%. Mason et al, 2014 showed that the 
inter seed and tissue effect could change the D90 of the 
prostate by 2.9%, and D2cc of the rectum by 10.5% [9]. 
The results of this study showed the interseed effect of 2 
to 10%, which is in agreement with the previous 
investigations. The artificial neural networks used in this 
study can be used for the correction of the dosimetry 
errors. The Monte Carlo simulation results were used as 
the dataset for training the network. The artificial neural 
network that uses the source positions as network inputs, 
shows a good accuracy in predicting the real dose 
distribution around the source in multi-seed implants. 
This algorithm can provide dose distributions with less 
than 5% deviations related to the MC simulations.  

 

Conclusion 
This study shows the benefits to use artificial neural 

networks for dosimetry purposes. It seems that artificial 
neural networks can be successfully used for accurate 
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dosimetry with inter-seed attenuation effect correction 
for AAPM TG-43-based dose calculation. Currently, 
artificial intelligence is being widely used in external 
radiation therapy, and brachytherapy dosimetry, and 
treatment planning. For more studies, efforts can be 
focused on developing dosimetry calculation using 
artificial neural networks, applied as supplementary 
software in treatment planning systems. 
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