Evaluation of Size-Specific Dose Estimates for Optimizing Pediatric Chest CT Protocol

Document Type : Original Paper


1 Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.

2 Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.

3 Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran

4 Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

5 Retired Scientist from Indian Institute of Astrophysics, present affiliation: Ongil, 79 D3, Sivaya Nagar, Reddiyur Alagapuram, Salem 636004. India

6 Department of Radiology, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran

7 Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012. INDIA


Introduction: The importance of estimating patient-sized adjusted radiation dose for pediatric computed tomography (CT) has long been accepted. High doses of ionizing radiation to children are often common in chest CT examinations, as the volume CT dose index (CTDIvol) is measured by a 32 cm phantom. Our study aimed to evaluate the effectiveness of size-specific dose estimate (SSDE) to compensate for the underestimated pediatric absorbed dose.      
Material and Methods: CTDIvol and dose-length product (DLP) of 320 pediatric chest CT (<1, 1-5, 5-10, 10-15 years) were obtained from Picture-Archiving and Communication System (PACS) in a hospital affiliated with the Shiraz University of Medical Sciences. CTDIvol was converted to SSDE based on the patient's effective diameter. The Statistical Package for Social Science (SPSS) was used for data analysis.   
Results: The variations between standard phantom (32cm) and the patients' mean effective diameter were approximately 65%, 57%, 47%, and 38%, across   <1, 1-5, 5-10, 10-15 year age groups, respectively.  The mean of SSDE for each age group was significantly higher than the corresponding CTDIvol values. Also, mean CTDIvol and SSDE values differed between age groups significantly (p<0.001). Results showed a strong correlation between age and the two-dose indicators, CTDIvol (0.361) and SSDE (0.184), with p<0.05
Conclusion: Pediatrics receive radiation doses comparable to the dose for adult-sized patients in chest CT protocol if the dosimetry procedure is not individualized. Thus, applying a size-based conversion coefficient is paramount in estimating the absorbed dose in pediatric chest CT. 


Main Subjects

  1. Huang W, Muo C, Lin C, Jen Y, Yang M, Lin J, et al. Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. BJC. 2014;110:2354-60. doi.org/10.1007/s00247-020-04803-0.
  2. Abalo KD, Rage E, Leuraud K, Richardson DB, Pointe HDL, Laurier D, et al. Early life ionizing radiation exposure and cancer risks: systematic review and meta-analysis. Pediatr Radiol. 2021;51:45-56. doi.org/10.1007/s00247-020-04803-0.
  3. Lee CI, Haims AH, Monico EP, Brink JA, Forman HP. Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology. 2004;231: 393-8. doi.org/10.1148/radiol.2312030767.
  4. Council NR. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. National Academies Press. 2006; 7. Available on: https://www.nap.edu/read/11340/chapter/1#ii.
  5. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346. doi: 10.1136/bmj.f2360.
  6. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet. 2012;380:499-505. doi.org/10.1016/S0140-6736(12)60815-0.
  7. Zopf DA, Green GE. CT scans in childhood and risk of leukaemia and brain tumours. The Lancet. 2012;380:1735-6. doi.org/10.1016/S0140-6736(12)60815-0.
  8. Kubo T, Lin PJP, Stiller W, Takahashi M, Kauczor HU, Ohno Y, et al. Radiation dose reduction in chest CT: a review. AJR. 2008;190:335-43. doi.org/10.2214/AJR.07.2556.
  9. Mettler FA, Wiest PW, Locken JA, Kelsey CA. CT scanning: patterns of use and dose. J radiol Prot. 2000;20:353-9. doi: 10.1088/0952-4746/20/4/301.
  10. Hart D, Wall B. UK population dose from medical X-ray examinations. Eur J Radiol. 2004;50:285-91. doi.org/10.1016/S0720-048X(03)00178-5.
  11. Lee TY, Chhem RK. Impact of new technologies on dose reduction in CT. Eur J Radiol. 2010;76:28-35. doi.org/10.1016/j.ejrad.2010.06036.
  12. McCollough CH, Bruesewitz MR, Kofler JM. CT dose reduction and dose management tools: overview of available options. Radiographics. 2006;26:503-12. doi.org/10.1148/rg.262055138.
  13. Leng S, Vrieze T, Yu L, McCollough C. SU‐GG‐I‐38: a direct skin dose calculation method in CT scans without table motion: influence of patient size and beam collimation. Med Phys. 2010;37:3110. doi:10.1118/1.3468071.
  14. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, etal. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169:2078-86. doi:10.1016/j.jvs.2010.01.042.
  15. Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose–length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection Publication 103 or dual-energy scanning. AJR. 2010;194:881-9. doi:10.2214/AJR.09.3462.
  16. McCollough CH, Christner JA, Kofler JM. How effective is effective dose as a predictor of radiation risk? AJR. 2010;194:890-6, 2010. doi:10.2214/AJR.09.4179.
  17. Shrimpton P. Assessment of patient dose in CT: appendix C—European guidelines for multislice computed tomography. Contract number FIGM-CT2000-20078-CT-TIP. Funded by the European Commission, 2004. Available on: https://op.europa.eu/en/publication-detail/-/publication/d229c9e1-a967-49de-b169-59ee68605f1a.
  18. Turner AC, Zhang D, Khatonabadi M, Zankl M, DeMarco JJ, Cagnon CH, et al. The feasibility of patient size‐corrected, scanner‐independent organ dose estimates for abdominal CT exams. Med phys. 2011;38:820-29. doi: 10.1118/1.3533897.
  19. Wildberger JE, Mahnken AH, Schmitz-Rode T, Flohr T, Stargardt A, Haage P, et al. Individually adapted examination protocols for reduction of radiation exposure in chest CT. Invest radiol. 2001;36:604-11. doi: 10.1097/00004424-200110000-00006.
  20. Das M, Mahnken AH, Mühlenbruch G, Stargardt A, Weiß C, Sennst AD, et al. Individually adapted examination protocols for reduction of radiation exposure for 16-MDCT chest examinations. AJR. 2005;184:1437-43. Doi:10.2214/ajr.184.5.01841437.
  21. Menke J. Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology. 2005;236:565-71. doi:10.1148/radiol.2362041327.
  22. Moore MB, Brady SL, Mirro AE, Kaufman RA. Size‐specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations. Med phys. 2014;41:071917(1-11). http://dx.doi.org/10.1118/1.4884227.
  23. Garzón W, Aldana D, Cassola V. Patient-Specific Organ Doses from Paediatric Head CT Examinations. Radiat Prot Dosimetry. 2020;191:1-8. doi:10.1093/rpd/ncaa126.
  24. McCollough CH, Leng S, Yu L, Cody DD, Boone M, McNitt-Gray MF. CT dose index and patient dose: they are not the same thing. Radiology. 2011;259:311-6. doi: 10.1148/radiol.11101800.
  25. Huda W, Vance A. Patient radiation doses from adult and pediatric CT. AJR. 2007;188:540-6. DOI:10.2214/AJR.06.0101.
  26. Siegel MJ, Schmidt B, Bradley D, Suess C, Hildebolt C. Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology. 2004;233:515-22. https://doi.org/10.1148/radiol.2332032107.
  27. Turner A, Zankl M, Demarco J, Angel E, Zhang D, McNitt-Gray M. A method to estimate organ doses from multidetector row CT abdominal exams from patient sized corrected CT dose index (CTDI) values: a Monte Carlo study [abstr]. In Radiological Society of North America, 95th Scientific Assembly and Annual Meeting, 2009.
  28. DeMarco J, Cagnon C, Cody D, Stevens D, McCollough CH, Zankl M, et al. Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose. Phys Med Biol. 2007;52:2583-97. doi:10.1088/0031-9155/52/9/017.
  29. Chaparian A, Zarchi HK. Assessment of radiation-induced cancer risk to patients undergoing computed tomography angiography scans. Int J Radiat Res. 2018;16(1):107-15.
  30. Mahmoodi M, Chaparian A. Organ doses, effective dose, and cancer risk from coronary CT angiography examinations. Am J Roentgenol. 2020 May;214(5):1131-6.
  31. Karimizarchi H, Chaparian A. Estimating risk of exposure induced cancer death in patients undergoing computed tomography pulmonary angiography. Radioprotection. 2017;52:81-6.
  32. Adhianto D, Anam C, Sutanto H, Ali MH. Effect of phantom size and tube voltage on the size-conversion factor for patient dose estimation in Computed Tomography examinations. Iran J Med Phys. 2020;17:282-8.
  33. Turner AC, Zankl M, DeMarco JJ, Cagnon CH, Zhang D, Angel E, et al. The feasibility of a scanner‐independent technique to estimate organ dose from MDCT scans: Using to account for differences between scanners. Med phys. 2010;37:1816-25. doi: 10.1118/1.3368596.
  34. Vassileva J, Rehani M, Kostova-Lefterova D, Al-Naemi HM, Al Suwaidi JS, Arandjic D, et al. A study to establish international diagnostic reference levels for paediatric computed tomography. Radiat Prot Dosimetry. Article in Radiation Protection Dosimetry. April 2015;165(1-4):70-80. DOI: 10.1093/rpd/ncv116 Source: PubMed.
  35. Boone JM, Strauss KJ, Cody DD, McCollugh CH, McNitt-Gray MF. Size specific dose estimate (SSDE) in pediatric and adult body CT examinations”, Report of AAPM Task Group 204, American Association of Physicists in Medicine One Physics Ellipse. 2011; College Park, MD 20740-3846.
  36. Özsoykal I, Yurt A, Akgüngör K. Size-specific dose estimates in chest, abdomen, and pelvis CT examinations of pediatric patients. Diagn Interv Radiol. 2018; 24:243– DOI: 10.5152/dir.2018.17450.
  37. Valentin J. The International Commission on Radiological Protection Publication 103, The 2007 Recommendations of the International Commission on Radiological Protection. Ann ICRP. 2007;37:1-332.
  38. Nyman U, Ahl T, Kristiansson M, Nilsson L, Wettemark S. Patient‐circumference‐adapted dose regulation in body computed tomography. a practical and flexible formula. Acta Radiologica. 2005;46:396-406. https://doi.org/10.1080/02841850510021193.
  39. Parikh RA, Wien MA, Novak RD, Jordan DW, Klahr P, Soriano S, et al. A comparison study of size-specific dose estimate calculation methods. Pediatr Radiol. 2018;48:56-65. doi.org/10.1007/s00247-017-3986-7.
  40. Tsujiguchi T, Obara H, Ono S, Saito Y, Kashiwakura I. Consideration of the usefulness of a size-specific dose estimate in paediatric CT examination. J Radiat Res. 208;59:430-5. doi.org/10.1093/jrr/rry022.
  41. Akpochafor MO, Adeneye SO, Kehinde O, Omojola AD, Oluwafemi A, Nusirat A, et al. Development of Computed Tomography Head and Body Phantom for Organ DosimetryIran J Med Phys. 2019;16:8-14.
  42. McCollough C, Bakalyar DM, Bostani M, Brady S, Boedeker K, Boone JM, et al. Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT. The Report of AAPM Task Group 220 September 2014. American Association of Physicists in Medicine. One Physics Ellipse, College Park, MD 20740-3846.







Volume 19, Issue 5
September and October 2022
Pages 315-321
  • Receive Date: 06 April 2021
  • Revise Date: 26 August 2021
  • Accept Date: 12 October 2021