Simulation Study on the Effect of High-Intensity Focused Ultrasound on Thermal Lesion of Biological Tissue under Different Treatment Modes

Document Type : Original Paper


1 School of Information Science and Engineering, Changsha Normal University, Changsha 410100, China

2 School of Information Science and Engineering, Changsha Normal University, Changsha 410100, China School of Physics and Electronics, Central South University

3 School of Information Science and Engineering, Changsha Normal University


Introduction: High-intensity Focused Ultrasound (HIFU) treatment is a non-invasive technology. The purpose of this study was to explore the effects of different treatment depths, tissue types and treatment interval on biological tissue thermal lesions under continuous and intermittent treatment modes.
Material and Methods: A simulation model of biological tissue irradiated by HIFU was established by finite difference time domain (FDTD). The thermal lesion of biological tissue irradiated by HIFU was calculated using the spherical beam equation (SBE) and Pennes biological heat transfer equation (PBHTE). Parameters such as treatment depth, tissue type, and treatment interval were varied to explore their effects on the thermal lesion to biological tissues in both continuous and intermittent treatment modes.
Results: For the same biological tissue or treatment depth, with the increase of HIFU irradiation time, the focal temperature under continuous treatment was higher than that under intermittent treatment, and the thermal lesion area under continuous treatment was greater than that under intermittent treatment. Whether continuous or intermittent treatment, with the increase of treatment depth, the temperature rise rate of deep tissue was slower than that of superficial tissue, and the thermal lesion area decreased gradually. Moreover, in the intermittent treatment mode with a long single treatment time and short treatment interval, the focal temperature rase quickly and the thermal lesion area was large.
Conclusion: For the same tissue type, treatment depth, or any treatment interval, the focal temperature and thermal lesion area corresponding to continuous treatment were greater than those corresponding to intermittent treatment.


Main Subjects

  1. Khokhlova TD, Hwang JH. HIFU for palliative treatment of pancreatic cancer. Advances in Experimental Medicine & Biology. 2016; 880(3):83-95. DOI:10.1007/978-3-319-22536-4_5.
  2. Maloney E, Hwang J H. Emerging HIFU applications in cancer therapy. International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology North American Hyperthermia Group. 2015; 31(3):302-9. DOI: 10.3109/02656736.2014.969789.
  3. Gui F, Zheng H, Li Y, Tan J, Du Y. Simulation research on temperature distribution in focal region during high intensity focused ultrasound intermittent treatment. Journal of Applied Acoustics. 2021;1- 12. DOI: 10.11684/j.issn.1000-310X.2021.03.009.
  4. Dom SM, Razak HR, Zaiki FW, Saat NH, Abd Manan K, Isa IN, et al. Ultrasound exposure during pregnancy affects rabbit foetal parathyroid hormone (PTH) level. Quantitative Imaging in Medicine & Surgery. 2013;3(1):49-53. DOI: 10.3978/j.issn.2223-4292.2013.02.06.
  5. Orsi F, Arnone P, Chen W, Zhang L. High intensity focused ultrasound ablation: A new therapeutic option for solid tumors. Journal of Cancer Research & Therapeutics. 2010;6(4):414. DOI:10.4103/ 0973-1482.77064.
  6. Fura U, Kujawska T. Selection of Exposure Parameters for a HIFU Ablation System Using an Array of Thermocouples and Numerical Simulations. Archives of Acoustics. 2019; 44(2): 349-55.DOI: 10.24425/aoa.2019.128498.
  7. Chen C, Wang Y, Tang Y, Wang L, Jiang F, Luo Y, et al. Bifidobacterium-mediated high-intensity focused ultrasound for solid tumor therapy: comparison of two nanoparticle delivery methods. International Journal of Hyperthermia. 2020; 37(1): 870-8. DOI: 10.1080/02656736.2020.1791365.
  8. Sazgarnia A, Shanei A, Taheri AR, Meibodi NT, Eshghi H, Attaran N, et al. Therapeutic Effects of Acoustic Cavitation in the Presence of Gold Nanoparticles on a Colon Tumor Model. Journal of Ultrasound in Medicine. 2013; 32(3): 475-83.DOI:10.7863/ jum.2013.32.3.475.
  9. Haar DGT, Coussios C. High intensity focused ultrasound: Physical principles and devices. Int J Hyperthermia. 2007; 23(2):89-104. DOI:10.1080/02656730601186138.
  10. Zhang Z, Chen T, Zhang D. Lesions in Porcine livers tissues created by continuous high intensity ultrasound exposures in vitro. Chinese Physics Letters. 2013; 30(2):024302. DOI:10.1088/0256-307X/ 30/2/ 024302.
  11. Fan T, Liu Z, Zhang D, Tang M. Comparative study of lesions created by high-intensity focused ultrasound using sequential discrete and continuous scanning strategies. IEEE Transactions on Biomedical Engineering. 2013; 60(3):763-769. DOI:10.1109/TBME.2011.2167719.
  12. Wang Y, Wang Q, Luo Y, Jiang L, Zeng Z, Gan L, et al. Comparative Study of Pulsed Versus Continuous High-Intensity Focused Ultrasound Ablation Using In Vitro and In Vivo Models. Journal of Ultrasound in Medicine. 2020 Feb;39(2):259-71. DOI: 10. 1002/ jump. 15098.
  13. Xu Y, Fu Z, Yang L, Huang Z, Chen WZ, Wang Z. Feasibility, Safety, and Efficacy of Accurate Uterine Fibroid Ablation Using Magnetic Resonance Imaging-Guided High-Intensity focused Ultrasound With Shot Sonication. Journal of Ultrasound in Medicine. 2015; 34(12):2293-303. DOI:10.7863/ultra.14.12080.
  14. Yi W, Wang Z B, Xu Y H. Efficacy, Efficiency, and Safety of Magnetic Resonance-Guided High-Intensity focused Ultrasound for Ablation of Uterine Fibroids: Comparison with Ultrasound- Guided Method. Korean Journal of Radiology. 2018; 19(4):724-32. DOI:10.3348/kjr.2018.19.4.724.
  15. Gholami M, Haghparast A, Dehlaghi V. Numerical study for optimizing parameters of high intensity focused ultrasound-induced thermal field during liver tumor ablation: HIFU simulator. Iranian journal of medical physics. 2017; 14(1):15-22. DOI:10.22038/ijmp.2017.19268.1176.
  16. Kamakura T, Ishiwata T, Matsuda K. A new theoretical approach to the analysis of nonlinear sound beams using the oblate spheroidal coordinate system. The Journal of the Acoustical Society of America. 1999; 105(6): 3083-6. DOI:10.1121/1.424638.
  17. Chen W, Wang P, Zhang Z, Deng X, Zhang C, Ju S. Nonlinear ultrasonic imaging in pulse-echo mode using Westervelt equation:a preliminary research. Computer Assisted Surgery. 2019; 24(2):54-61. DOI:10.1080/ 24699322.2019.1649065.
  18. Guo C, Yao L, Zheng H, Wang Y, Gao S, Wang X, et al. Finite element simulation of HIFU nonlinear medical ultrasound field. Ninth International Symposium on Precision Mechanical Measurements. International Society for Optics and Photonics. 2019; 11343:113431Y. DOI:10.1117/12.2548855.
  19. Sarkar R, Kumar Pandey P, Kundu S, Panigrahi PK. Exact sub and supersonic pressure wave-fronts in nonlinear thermofluid medium. Waves in Random and Complex Media. 2021;1-14. DOI:10.1080/17455030. 2021.1954263.
  20. Gu J, Jing Y. Modeling of wave propagation for medical ultrasound: a review. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control. 2015; 62(11):1979. DOI:10.1109/ TUFFC.2015. 007034.
  21. Chen T, Qiu YY, Fan TB, Zhang D. Modeling of shock wave generated from a strong focused ultrasound transducer. Chinese Physics Letters. 2013 Jul 1;30(7):074302. DOI:10.1088/0256-307X/ 30/7/ 074302.
  22. Wu DL, Gao SP, Yao L, Chen J, Zhang ZK, Li J, et al. Analysis Of Nonlinear Focused Ultrasound Field With Finite Element Method. 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). 2021.DOI:10.1109/SPAWDA51471.2021.9445508.
  23. Kamakura, Tomoo. Two Model Equations for Describing Nonlinear Sound Beams. Japanese Journal of Applied Physics. 2004; 43(5B):2808-12. DOI:10.1143/JJAP.43.2808.
  24. Mohammadpour M, Firoozabadi B. High intensity focused ultrasound (HIFU) ablation of porous liver: Numerical analysis of heat transfer and hemodynamics. Applied Thermal Engineering. 2020; 170:115014. DOI: 10.1016/j.applthermaleng.2020.115014.
  25. Gupta P, Srivastava A. Non-Fourier transient thermal analysis of biological tissue phantoms subjected to high intensity focused ultrasound. International Journal of Heat and Mass Transfer. 2019; 136(7):1052-63. DOI: 10.1016/j.ijheatmasstransfer.2019.03.014.
  26. Adams M T, Giraud D S, Cleveland R O. Modeling acousto-optic sensing of high-intensity focused ultrasound lesion formation. The Journal of the Acoustical Society of America. 2012; 132(3):1918. DOI:10.1121/1.4755039.
  27. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. International Journal of Radiation Oncology Biology Physics. 1984, 10(6):787-800. DOI: 10.1016/0360-3016(84)90379-1.
  28. Qi M, Liu J, Mao Y. Temperature rise induced by an annular focused transducer with a wide aperture angle in multi-layer tissue. Chinese Physics B. 2018; 01(27):394-9. DOI: 10.1088/0256- 307X/30/7/074302.
  29. Heikkilae J, Curiel L, Hynynen K. Local Harmonic Motion Monitoring of focused Ultrasound Surgery-A Simulation Model. IEEE Transactions on Biomedical Engineering. 2010; 57(1):185-93. DOI:10.1063/1.3131411.
  30. Almekkaway M K, Shehata I A, Ebbini E S. Anatomical-based model for simulation of HIFU-induced lesions in atherosclerotic plaques. International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology North American Hyperthermia Group. 2015; 31(4):433-42. DOI:10.3109/02656736.2015.1018966.
  31. Kyriakou Z, Corral-Baques M I, Amat A. HIFU-Induced Cavitation and Heating in Ex Vivo Porcine Subcutaneous Fat. Ultrasound in Medicine & Biology. 2011; 37(4):568-79. DOI:10.1016/ j.ultrasmedbio.2011.01.001.
  32. Ginter S. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption. Ultrasonics. 2000; 37(10):693-6. DOI:10.1016/S0041- 624X(00)00012-3.
  33. Suomi V,Treeby B ,Jaros J. Transurethral ultrasound therapy of the prostate in the presence of calcifications: A simulation study. Medical physics.2018;45(11):4793-805. DOI:10.1002/ mp.13183.
  34. Wang M, Zhou Y. High-Intensity focused Ultrasound (HIFU) Ablation by the Frequency Chirp Excitation: Reduction of the Grating Lobe in Axial focal Shifting. Journal of Physics D Applied Physics. 2018;51(28):285402. DOI:10.1088/1361-6463/aacaed.
  35. Marquet F, Pernot M, Aubry J F. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results. Physics in Medicine & Biology. 2009; 54(9):2597-613. DOI:10.1088/0031-9155/54/9/001.
  36. Aubry J, Pernot M, Marquet F. Transcostal high-intensity-focused ultrasound: ex vivo adaptive focusing feasibility study. Physics in Medicine & Biology. 2010; 53(11):2937-51. DOI: 10.1088/ 0031-9155/53/11/012.
  37. Kyriakou A, Neufeld E, Werner B. A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. International Journal of Hyperthermia. 2014; 30(1):36-46. DOI:10.3109/02656736.2013.861519.
  38. Casarotto R A, Adamowski J C, Fallopa F. Coupling agents in therapeutic ultrasound: acoustic and thermal behavior. Archives of Physical Medicine & Rehabilitation. 2004; 85(1):162-5. DOI:10.1016/S0003-9993(03)00293-4.
  39. Balmaseda MT, Fatehi MT, Koozekanani SH. Ultrasound therapy: a comparative study of different coupling media. Archives of Physical Medicine and Rehabilitation. 1986; 67(3):147-50.
  40. Sites B D, Brull R, Chan V. Artifacts and pitfall errors associated with ultrasound-guided regional anesthesia. Part I: understanding the basic principles of ultrasound physics and machine operations. Reg Anesth Pain Med. 2007; 32(5):412-8. DOI: 10.1016/j.rapm.2007.05.005.
  41. WD O’ Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol. 2007; 93(1-3):212-55. DOI: 10.1016/j.pbiomolbio.2006.07.010.
  42. Tharkar P, Varanasi R, Wu S. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Frontiers in Bioengineering and Biotechnology. 2019; 7. DOI: 10.3389/fbioe.2019.00324.
  43. Yan S, Min L U, Ding X. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy. Scientific Reports. 2016; 6:31833. DOI:10.1038/srep31833.
  44. Ogbole GI. Radiation dose in paediatric computed tomography: risks and benefits. Annals of Ibadan postgraduate medicine. 2010;8 (2):118-26.






Volume 19, Issue 4
July and August 2022
Pages 199-206
  • Receive Date: 05 August 2021
  • Revise Date: 31 January 2022
  • Accept Date: 08 February 2022
  • First Publish Date: 08 February 2022