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Introduction: This research is a preliminary study of the development of Artificial Intelligence (AI) as a 
conversion tool from the pixel value of Cine a-Si 1000 Electronic Portal Imaging Device (EPID) images to 
dose. It also investigates the relationship between the Monitor Unit (MU), dose rate, number of frames, and 
beam profile of Electronic Portal Imaging Device (EPID) images to facilitate further mathematical correction 
that must be added to create accurate dosimetry by Cine EPID images. 
Material and Methods: Homogeneous and inhomogeneous phantom was irradiated in a Linear Accelerator 
(Linac) 6 MV with different techniques, field size, and phantom thickness. The Cine a-Si 1000 EPID images 
were taken and compared to dose distribution data derived from the Eclipse treatment planning system (TPS) 
at Source Axis Distance 100 cm or isocenter field. The AI model training process begins with the 
augmentation of EPID and TPS images from homogeneous phantom so that 1152 images are obtained. These 
images are then split randomly into training and testing data 7:3, and validation is done using gamma index 
3%/3mm. 
Results: An AI model based on Convolutional Neural Network (CNN) with 6 layers has been successfully 
created that can convert EPID pixel values into dose distribution without any mathematical correction. The 
best results from validation with a gamma index of 3%/3mm compared to TPS calculations reached 92.40% 
±28.14%.  
Conclusion: An AI model has been successfully created that can convert EPID pixel values into dose 
distribution but need improvement by considering the characteristics contained in the EPID image and the 
number of datasets. 
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Introduction 
Verification of a patient's position using dosimetry 

film requires periodic calibration and takes a long 
time. The Electronic Portal Imaging Device (EPID) is a 
tool designed to resolve these issues. The earliest 
EPID model was a scanning liquid-filled ionization 
chamber (SLIC), followed by a charge-coupled 
camera-based device (CCD), with the most recent and 
widely used EPID being based on amorphous silicon 
(a-Si) technology (1). 

An EPID detector can be easily set up by attaching 
it to the linear accelerator. It also has a higher 
resolution and more accurate readings of dose 
distribution. In addition, it can capture images 
continuously through its continuous acquisition (cine) 
mode (2). Previous studies have shown that this mode 
can be used to track the movement of tumor organs 
(3). 

Dose information acquired through EPID images 
can be used to verify dose distribution before 
treatment. In addition, it can also be used as in-vivo 

dosimetry (IVD), that is dose verification during 
treatment (2). Mans et al. found that 9 out of 17 
serious errors missed by pre-treatment verification, 
such as failed plan transfer and delivery, were 
detected during treatment verification (4). 
Consequently, many algorithms have been developed 
to produce IVD based on EPID images (5–11). 

The use of EPID images for dosimetry is not 
without challenges. McCurdie et al summarized those 
challenges into nine main categories, namely image 
ghosting, overresponse to low energy photons, self-
scatter signals, optical glare effect, patient scattering, 
robotic arm backscatter, mechanical flexion, gantry 
angle uncertainties, and lost image dose. Current 
research aims to solve these challenges so that it is 
possible to create an accurate dosimetry based on 
EPID image (12,13). 

The techniques to reconstruct dose distribution 
from EPID images can be classified into three 
categories: Monte Carlo (MC)-based model, 
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convolution-based model, and empirical-based model. 
Each of the categories have has their own advantages 
and disadvantages. For example, the MC-based model 
has the highest accuracy but requires a long 
computing time, which makes it impractical for 
routine verifications(1). 

Currently, researchers are developing 
radiotherapy tools using artificial intelligence (AI) 
(14–20). AI works by combining large amounts of data 
with fast and iterative intelligent processing 
algorithms. It allows the system to learn automatically 
from patterns or features in the data (21,22). For EPID 
dosimetry, researcher have used AI as a correction 
tool to increase the similarity of dose distribution 
acquired through EPID (23,24). However, there are no 
previous research that use AI to reconstruct dose 
distribution as of this writing. 

This study developed AI as a reconstruct dose 
technique by the conversion of pixel value of EPID 
images into dose to build accurate two-dimensional 
radiotherapy dosimetry. To support the results and 
further improvement, this study will also investigate 
the relationship between the monitor unit (MU), dose 
rate, number of frames, and beam profile of an EPID 
detector in cine mode. 

 

Materials and Methods 
The experiments were performed at Cipto 

Mangunkusumo General Hospital using a Varian 
Unique (Varian Medical Systems, Palo Alto, CA, USA) 
single energy (6 MV) Linac, equipped with an a-Si 1000 
EPID. All the images were extracted in cine mode, with 
a frame rate of 4.711 frames per seconds (fps) at 400 
MU/min. The gantry angle was set at 0 degrees, while 
the source to detector distance (SDD) was set at 150 cm, 
and the phantom is took placed between the source and 
detector with the source axis distance (SAD) set to 100 
cm as illustrated in Figure 1. The EPID detector 
specification is shown in Table 1.  The images from the 
EPID were compared with the Digital Imaging and 
Communications in Medicine (DICOM), which was 
generated from the Eclipse treatment planning system 
(TPS), version 13.6 (Varian Unique Medical Systems, 
Palo Alto, CA, USA) using the anisotropic analytical 
algorithm (AAA). This research is divided into two 
stages, namely the development of the AI model and the 
investigation of cine EPID images characteristics. The 
flow of this research is shown in Figure 2 and explained 
in the next stage. 

 

 

Figure 1. Arrangement between phantom and the EPID in the 
experiment 
 
Table 1. Specification of the a-Si 1000 EPID 
 

Parameter Value 

Max irradiated area (cm2) 
Active area (cm2) 
Total pixel matrix 
Pixel size (mm) 

30 × 40 
30 × 40 

768 × 1024 
0.390 

 

 
 
Figure 2. Main workflow of the study  

 

Development of Al Model 

Preparation 
A homogeneous phantom with RW3 slab phantom from 
PTW with size 40×40×1 cm3 was arranged and 
irradiated with various thicknesses (symbolized by w) 
and field sizes (symbolized by l) according to Table 2. 
Furthermore, the MU and dose rate was set at 100 MU 
and 400 MU/min, respectively.  
Image processing of an EPID image uses a unique 
calculation technique as shown in Equations (1) and (2). 
𝑆𝑥,𝑦 = 2𝑛 − 𝑆𝑟𝑎𝑤(𝑥,𝑦)  (1) 

𝑆∑(𝑥,𝑦) = ∑ 𝑆𝑖(𝑥, 𝑦)𝑚
𝑖   (2) 

 

where 𝑆𝑟𝑎𝑤 is the image before processing; 𝑆 is the 

image after processing; 𝑥 and 𝑦 are index pixel values of 

an image;  𝑛 is the bit value of the image; 𝑖 is the index of 

the number of images; 𝑚 is the maximum number of 

images in one exposure; and 𝑆𝑖 is an image to 𝑖.  
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Table 2 Variation of thickness (w) and field size (L) in the 
homogeneous phantom 
 

W 
L 

5 cm 10 cm 15 cm  20 cm 

5×5   cm2     

10×10 cm2 
    

15×15 cm2     

20×20 cm2     

 
Equation 1 is for reversing and offsetting the amount 

of cine produced by EPID. Each raw pixel value is 

replaced by 2𝑛 and n is the bit value. Following research 
conducted by Peca et al., the bit is 14, it is designed to 
arrange film with lower pixel values representing a 
larger dose. Because of that, this equation modifies the 
increase in intensity linear as increasing the dose (11).  

Equation 2 explains about sums up all the cine EPID 
images in one exposure becoming a single image. It 
occurs because all images are recorded as a single unit, 
not individual frames in cine imaging (11). Up to this 
stage, the image value is still in pixels. 

For EPID image validation, calculation simulations 
were carried out using TPS, and the dose distribution 
image from TPS calculations was used as ground truth. 
Because TPS images only can generates on sizes of 
384×512. This condition is different from the total 
pixels in EPID images (see Table 1). In order to 
facilitate the comparison, the images from TPS and 
EPID were resized to 384×512, or half the resolution of 
the EPID images. 

 

 

 

 

Augmentation 
Because the total number of cases is still small, 

following Table 2 just only 16 cases, then augmentation is 
needed. The augmentation is done by rotate rotating the 
image every 5 degrees and flipping it so that 1152 datasets 
for EPID and TPS images are created. The dataset is 
divided randomly for training and testing data 7:3. 

 

Build the AI model 
In this study, an Artificial Intelligence (AI) model 

was created, the model was built using the python 
programming language, run on Nvidia K80 GPU with 
12 GB RAM memory, and the architecture is shown in 
Table 3 The model used is Convolutional Neural 
Networks (CNN) with 6 layers. On each layer, there are 
hidden neurons whose number increases by 2 times on 
each additional layer, i.e., 16, 32, 64, 128, 256. Then, 
the last layer (6th layer) is the output layer that produces 
the distribution dose image. We optimize the models by 
Adam optimizer where the epoch was set to 15 with a 
learning- rate of 0.000001, and the loss value calculation 
is represented by mean squared error (MSE).  

 

Validation 
Validation was carried out using the gamma index 

on the in-house software built by MATLAB R2019b. 
The gamma index (γ) is one of the most used metrics for 
the verification of complex modulated radiotherapy. All 
dose distributions reconstructed from EPID images are 
compared with the actual dose distribution from the 
treatment plan using t-test. The gamma index criterion 
used in this study is 3%/3mm. 

 

 

 
Table 3. Artificial Intelligence model 
 

Layer Activity Dimension Number of parameter 

1 convolution 2D 1,384,512,16 416 

  batch normalization 1,384,512,16 64 

  activation 1,384,512,16 0 

2 convolution 2D 1,384,512,32 12,832 

  batch normalization 1,384,512,32 128 

  activation 1,384,512,32 0 

3 convolution 2D 1,384,512,64 51,264 

  batch normalization 1,384,512,64 256 

  activation 1,384,512,64 0 

4 convolution 2D 1,384,512,128 204,928 

  batch normalization 1,384,512,128 512 

  activation 1,384,512,128 0 

5 convolution 2D 1,384,512,256 819,456 

  batch normalization 1,384,512,256 1,024 

  activation 1,384,512,256 0 

6 convolution 2D 1,384,512,1 6,401 

  batch normalization 1,384,512,1 4 

  activation 1,384,512,1 0 

Total parameters 1,097,285 

Trainable parameters  1,096,291 

Non-trainable parameters  994 
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Figure 3. Workflow investigation beam profile 

 

 
(a) (b) 

 
Figure 4. Example of (a) planning on TPS in inhomogeneous phantom; (b) set up RANDO phantom and EPID 

 

Investigation of characteristics of Cine EPID Images 

Investigate the number of cine EPID images versus 

MU 
The settings follow Figure 1, using a homogeneous 

phantom made from RW3 with a thickness of 10 cm. 
The presence of the phantom is necessary to reduce the 
risk of damaging the detector due to high radiation 
exposure. In this step, a number of EPID images was 
generated in cine mode with variations of MU between 
5 and 300, at a fixed dose rate of 400 MU/minute. This 
step is needed in order to determine the relationship 
between the number of cine EPID images and the MU. 
when the number of EPID images is inconsistent with 
the increase in the MU value, then the sum of the pixel 
values of each cine image carried out by equation 2 will 
also be inconsistent. This can cause the AI model to fail 
to convert the pixel value into the correct dose. 

 

 

 

Investigate the number of cine EPID images versus 

dose rate 
The settings are the same as above mentioned.  In this 

step, the phantom was irradiated with a fixed MU of 100 
and the dose rate is varied from 100 to 400 MU/min. This 
investigation checks the consistency of increasing the 
number of cine EPID images with the dose rate to 
anticipate errors that will occur in equation 2. 

 

Investigate beam profile 
The focus of this stage is to investigate the physical 

process leading to the creation of pixel values in the 
EPID images. The workflow is shown in Figure 3, 
divide based on the irradiation technique, namely: 
conformal radiotherapy and intensity-modulated 
radiation therapy (IMRT) techniques.  

For conformal radiation therapy, two variations of 
phantom were used. First, a homogeneous phantom with 
RW3 material arranged according to Table 2 are 
irradiated for 100 MU with a dose rate of 400 MU/min. 
Second, an inhomogeneous female RANDO phantom 
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(Alderson Research Laboratories Inc. Stanford. CT, 
USA) are irradiated in the abdomen area of the size 
10×10 cm2 for 242 MU with a dose rate of 400 MU/min, 
and the gantry angle was set at 0 degrees. Replanning 
was shown in Figure 4(a) and the setup of the RANDO 
phantom as shown in Figure 4(b). 

For IMRT, the phantom is irradiated following a real 
cancer case, but the gantry angle is normalized to zero 
degrees and the patient is transformed into a 
homogeneous phantom with a thickness of 10 cm. All 
phantoms are scanned on a CT simulator and the 
calculated dose distribution are exported in DICOM 
format. The EPID and the actual dose distribution 
images were set to a dimension of 384×512. 

 

𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝐺𝑅𝐼𝐷 = 𝑃𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝐸𝑃𝐼𝐷 ×
𝑆𝐴𝐷

𝑆𝐷𝐷
 (3) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑖𝑛𝑙𝑖𝑛𝑒 = 𝑆
𝑥,

512

2

×
100

max (𝑆
𝑥,

512
2

)

 (4) 

𝑁𝑜𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑐𝑟𝑜𝑠𝑠𝑙𝑖𝑛𝑒 = 𝑆384

2
,𝑦

×
100

max (𝑆384
2 ,𝑦

)

 (5) 

 
Since the position of the EPID detector is 50 cm 

below the isocenter plane (see Figure 1), the EPID 
images were magnified from its their original size. 
Therefore, the grid of the EPID images must be scaled 
back to its original size using Equation 3. The pixel 
value of the EPID images is not comparable to the dose 
value of the dose distribution images. Therefore, for 
profile analysis purposes, both images need to be 
normalized using Equation 4 and Equation 5. Each 
EPID profile was analyzed using Full Width Half 
Maximum (FWHM). Furthermore, the discrepancy 
between the EPID and TPS profiles was calculated 
based on the percentage of deviations shown in 
Equation 6. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒
× 100 (6) 

 
 

Results 
Conversion of cine EPID pixel value to dose by AI model 

The model is obtained after carrying out the training 

process, the data that has been separated for testing is 

reused for validation using the gamma index 3%/3mm, and 

the testing data is converted from pixel to dose using the 

model and compared to the TPS dose distribution image. 

Figure 5 shows that the average gamma index is 45.17%, 

with the highest value only reaching 92.40% ±28.14%.  

Figure 6 tries to group the distribution of the gamma 

index results, there were 10 groups based on the percentage 

range of accuracy. It shows us from 381 images that were 

tested, there were 45 images above 90% or 11.8% of the 

total cases tested, while the largest group is the accuracy 

between 20-30%. It reaches 125 cases or 32.8% of the total 

cases tested. These results indicate that the model is 

successful in providing direct conversion of pixels in EPID 

cine images to doses. These results are new proposals and 

cannot be compared with other studies. 

 

 
 

Figure 5. Gamma index 3%/3mm for 381 different cases 

 

 
 

Figure 6. Gamma passing rate group  

 

The characteristics of Cine EPID Images 

 Based on Figure 7(a), the correlation between the 

number of cine EPID images (y-axis) vs. dose rate 

(MU/min) (x-axis) is negative linear, with the equation 

being y = -0.066x + 45.000; it means the number of images 

decreases as the dose rate increases. Because the data taken 

is only 4 points, the dose rate pattern still looks quite linear, 

but it is still necessary to anticipate a model that fails to 

convert the pixel value into a dose because decreasing the 

number of images at a high dose rate will reduce the pixel 

value that is read after equation 2 is completed. 

Furthermore, Figure 7(b) shows that the correlation 

between the number of cine EPID images versus MU tends 

to be linear. The equation y = 0.177x + 0.036 indicates that 

the number of images increases as the MU increases. At a 

400 MU/min dose rate, we found that EPID images 

increased every 5 MU. However, there were anomalies 

with no increases at MU 20, 60, 110, 145, 155, 195, and 

240 that must be anticipated to reduce the possibility of the 

model failing to convert. 
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                                                                 (a)                                                                                                                           (b) 
 

Figure 7. Relation between number of Cine EPID images vs (a) dose rate (MU/min) and (b) MU 

 

  
(a) (b) 

Figure 8. Crossline profile of the homogenous phantom between TPS vs EPID (a) 5×5 cm2 (b) 20×20 cm2 

 

Figure 8 is an example of an inline profile (pixel index 

versus percentage at the central axis in inline direction) of 

EPID versus TPS in a homogeneous phantom. Figure 8(a) 

shows that the EPID image profile displays significant 

similarities in the field size of 5×5 cm2. On the other hand, 

as illustrated in Figure 8(b), the EPID image does not show 

similarities to the TPS image in a field greater than 5×5 

cm2, especially in the umbra section (below 20%) and the 

horn shape. 

Figure 9 shows that the EPID image cannot read a large 

field such as a 20×20 cm2 because of the EPID detector's 

limited size. The inability of the detector to read the entire 

area of such a size will indicate the failure to construct 

dosimetry based on EPID images. 

 

 
Figure 9. Inline profile on homogenous phantom with field size 20×20 cm2 

Tables 4 and 5 shows the comparison between EPID 

and TPS images at the isocenter in the RANDO phantom 

with conformal radiotherapy technique and homogeneous 

phantom with IMRT technique. Both tables show inline 

and crossline profiles from EPID are similar to TPS. In the 

RANDO phantom, FWHM measurements on the inline 

and crossline profile showed a difference of ± 1.367% and 

± 1.580%, respectively. Similar in the IMRT technique, the 

inline and crossline profiles show different differences just 

± 0.794% and ± 1.925%, respectively. 

 
Table 4. Comparison between EPID and TPS images at the isocenter in the 

RANDO female phantom 

 

Parameter 
FWHM (mm) 

Inline Crossline 

TPS 100.493 100.370 

EPID 102.435 102.613 

Percentage deviation (%) ±1.367 ±1.580 

 
Table 5. Comparison between EPID and TPS image at the isocenter in the 
homogeneous phantom with the IMRT technique 

 

Parameter 
FWHM (mm) 

Inline Crossline 

TPS 103.390 113.982 

EPID 104.552 117.085 

Percentage deviation (%) ±0.794 ±1.925 
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(a)      (b) 

 

Figure 10. Percentage of deviation between VS Thickness of homogeneous phantom (a) inline profile; (b) crossline profile 

 

Figure 10 shows the comparison between thickness and 

percentage of deviation from FWHM in inline and 

crossline profiles, color line indicates the field size 

variation. Figure 10 shows there is no dominant pattern 

found in terms of increasing thickness and field size of 

homogeneous phantom versus discrepancies in FWHM 

measurement. This indicates that the field size of the EPID 

and TPS images are similar. Furthermore, Figure 11(a) 

compares the inline profile of EPID and TPS of the female 

RANDO phantom with the conformal radiotherapy 

technique, it is demonstrating that the profile does not fit 

both the umbra region and horn region. It also has a large 

ripple resulting from the material responses in the detector 

and the backscattering of the attenuator. Figure 11(b) 

shows the inline profile between EPID and TPS in the 

homogeneous phantom with the IMRT technique. In this 

case, the profile of EPID and TPS is a much better match 

than on RANDO phantoms as well as in the umbra section.  
 

Discussion 
Based on this study, the AI model has been 

successfully implemented and great opportunity to be 
used as a technique for converting pixel values in EPID 
images into doses directly but needs improvement 
before being used in daily measurements. Due to limited 
computational resources, the model has only been run 
on 15 epochs.  

The current model used is possible to be improved, 
starting with adding dropouts, number of layers and 
epochs, or making variations in loss function techniques. 
The loss function is a function that helps AI to 
determine whether the weighted value is appropriate or 
not. Mean squared error is one of the most frequently 
used to measure the similarity of two images. In the 
future, it is possible to use the gamma index as a loss 
function, but large computational resources are required 
to do it. 

 Besides improving the model, adding data sets can 
improve the accuracy and reduce over fitting of the 
conversion of EPID pixel values into doses.  
Furthermore, image processing to in the preprocessing 
section also can be employed before the data is trained. 
It is intended that the data learned by AI is does not 

contain noise which often causes AI to fail to learn data 
patterns correctly. 

Besides CNN, numerous AI models have possibility 
to facilitate conversion from pixel value to dose, such as 
U-Net, this model has been used as a correction 
technique for EPID dose distribution in the umbra (dose 
to dose correction not conversion) (21,24). Another 
example model is a generative adversarial network 
(GAN), this model has a good result of image-to-image 
translation cases (22). Basically, every model used to 
improve image quality could be used to conversion 
because it utilizes image regression techniques, it 
regresses between the value of the source data to the 
target data. Due to the complexity of cine EPID images, 
finding the most appropriate AI model will be a 
challenge for researchers in radiotherapy. 

Focus on the relationship between the number of 
cine EPID images to MU, Figure 7(b) shows that the 
response of cine mode is approximately related to the 
loss of 1 frame per irradiation. The response comes up 
to a linear dependence with increasing MU, but random 
anomalies in several MU’s occurred, namely at 20, 60, 
110, 145, 155, 195, and 240. Referring to Equation 2, 
the loss of 1 frame will greatly affect the result of the 
sum of the pixel values of the entire cine EPID image. 
because of that, inconsistency of frame loss will cause 
the AI model to misinterpret pixel values to dose. 

Furthermore, Figure 8 shows the EPID images do 
not match TPS in the umbra region and horn shape in a 
homogeneous phantom with a conformal radiotherapy 
technique. The horn shape first appears at a field 5×5 
cm2 and arises dependent on increasing field size. This is 
similar to the study by Peca et al, their which converts 
pixel values to doses with an empirical equation 
involving tissue maximum ratio (TMR) values and adds 
corrections to the horn and umbra sections (11). On the 
other hand, Figure 11(a) shows that in the 
inhomogeneous phantom at field 10×10 cm2, the horn in 
the TPS image does not exist.  
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         (a) (b) 

Figure 11. Inline profile between EPID vs TPS: (a) Rando female phantom (b) IMRT technique 

 
This proves that adding horn correction for all cases 

will decrease accuracy when the actual dose profile has 
no horn. Moreover, in Figure 11(b), the beams profile of 
the IMRT technique for homogeneous phantom has 
better matches than other techniques. It is caused by the 
images taken using IMRT have having no horn forms in 
their profiles. The results also show that horn correction 
for dosimetry based on EPID image in the IMRT 
technique is not required.  

Figure 9 shows that making dosimetry based on 
EPID images must pay attention to the size of the 
detector, based on our calculations, the maximum limit 
of a-Si 1000 EPID placed at SDD 150 cm and the organ 
target at SAD 100 cm can only capture a maximum field 
size of 10×13.33 cm2(25), beyond that, there will be 
truncated parts such as umbra, penumbra, etc. Increasing 
the SDD position is not recommended as it will increase 
the backscattering of the attenuator and material within 
the detector itself (1).  

Tables 4,5 and Figure 10 confirms the results of 
McCurdi's research which states that there is no problem 
with the field size of the EPID image against the 
reference. the percentage of discrepancy at FWHM 
measurement also shows under 2.2% between EPID vs 
TPS profile. In addition, the differences in the results of 
FWHM measurements on the inline and crossline 
profiles indicate that the detector's resolution has a big 
impact on the image. EPID A-Si 1000 has a different 
resolution in the x and y direction, as explained in Table 
1. Therefore, using a detector with a different resolution 
is not recommended to build dosimetry because of the 
difficulty of correcting the EPID images. This also 
clarifies previous research that proved EPID A-Si 1200 
provides more accurate measurements than EPID A-Si 
1000; one of the reasons is the detector has an equal 
resolution in inline and crossline profiles (26).  

Moreover, every beam profile in EPID images has a 
ripple that occurs due to backscattering between the 
detector material, the attenuator, and the detector's 
response. It is also a consequence by of the pixel 
sensitivity variation and off-axis dose-response of an 
EPID. This effect has been described by Greer et al. 

(27). In previous research by Ding et al., a correction 
was added with flood field and dark field images (28).  

 

Conclusion 
The study shows that the AI model has been 

successfully implemented to convert the pixel value of 
EPID images to dose. The comparison between the dose 
calculated by AI model and TPS reached 92.40% 
±28.14%. gamma passing rates at 3% / 3mm, so it needs 
further study to improve the result.  Moreover, the 
inconsistency of increasing the number of cine EPID 
images with increasing MU and dose rate needs to be 
resolved in order to avoid conversion errors by the AI 
model. Ripple correction (artifact) that occurs in the 
EPID image due to backscattering also needs to be 
added to the preprocessing, so that the model only learns 
the actual pixel value pattern. In the end, considering 
that the horn and umbra appear in conformal 
radiotherapy but not in IMRT, the AI model must be 
built based on the irradiation technique, different 
irradiation techniques must be retrained on the model. 
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