The Dosimetric Comparison of Different SBRT Techniques for Treatment of Liver Cancer Using Flattened and Flattening Filter Free Beam

Document Type : Original Paper

Authors

1 Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Rohini, New Delhi, India

2 Centre for Functional Materials, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India

Abstract

Introduction:To compare the three-dimensional conformal radiotherapy (3DCRT), dynamic conformal arc therapy (DCA), and volumetric modulated arc therapy (VMAT) in stereotactic body radiation therapy (SBRT) of liver cases using 6MV and 10 MV flattened beam (FB) and flattening filter-free beam (FFFB).
Material and Methods:Twenty liver SBRT patients were selected. The dose prescription was 40 Gy delivered in 5 fractions. 3DCRT, DCA and VMAT planning was performed using 6 MV FB, 6 MV FFFB, 10 MV FB and 10 MV FFFB. Planning target volume (PTV) coverage, organs at risk (OARs) doses, monitor units (MU), and beam on time (BOT) were noted.
Results:VMAT plan produces better PTV coverage in the D98% and D95% region. 6 MV and 10 MV VMAT FB and FFFB reduced the D700cc, V10Gy, and Dmean of the liver minus gross tumor volume region compared to 3DCRT and DCA plans. FFFB in combination with VMAT producing highly conformal plan (Conformit index=1.19), better conformity number (CN=0.85), and lowering Paddick gradient index (GIpad=3.29) in comparison to 3DCRT and DCA. The FFFB needs higher monitor units to achieve the plan in all the techniques. FFFB reduces the BOT, body-PTV mean dose in the non-tumour volume.
Conclusion: VMAT combined with FFFB will produce a highly conformal plan, spare the OAR’s, deliver fast and dose fall off in the body-PTV region is more as compared to 3DCRT and DCA. The VMAT will more advantage to treat the multiple lesions simultaneously and reducing the intra-fraction motion error in liver SBRT.

Keywords

Main Subjects


  1. Scorsetti M, Clerici E, Comito T. Stereotactic body radiation therapy for liver metastases.J GastrointestOncol, 2014;5(3):190-7.
  2. Jeraj R, Mackie TR, Balog J, Olivera G, Pearson D, Kapatoes J, Ruchala K, Reckwerdt P. Radiation characteristics of helical tomotherapy. Med. Phys. 2004; 31(2), 396–
  3. Araki F. Monte Carlo study of a Cyberknife stereotactic radiosurgery system. Med. Phys. 2006; 33(8), 2955.
  4. Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiation induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys. 2002;53(4):810-21.
  5. Sharma SD. Unflattened photon beams from the standard flattening filter free accelerators for radiotherapy: Advantages, limitations and challenges. J Med Phys. 2011;36(3):123–
  6. Georg D, Knoos T, McClean B. Current status and future perspective of flattening filter-free photon beams. Med.Phys.2011;38(3):1280–
  7. Ponisch F, Titt U, Vassiliev ON, Kry SF, Mohan R. Properties of unflattened photon beams shaped by a multileaf collimator. Med Phys 2006;33(6Part1):1738–
  8. Hrbacek J, Lang S, Klock S. Commissioning of photon beams of a flattening filter-free linear accelerator and the accuracy of beam modeling using an anisotropic analytical algorithm.Int.J.Radiat.Oncol.Biol.Phys.2011;80(4):1228–
  9. Cashmore J. The characterization of unflattened photon beams from a 6 MV linear accelerator. Phys Med Biol. 2008;53(7):1933–
  10. Jank J, Kragl G, Georg D. Impact of flattening filter free linear accelerator on structural shielding design. Z Med Phys 2014;24(1):38-48.
  11. Kry SF, Titt U, Ponisch F, Vassiliev ON, Salehpour M, Gillin M, et al. Reduced neutron production through use of a flattening-filter-free accelerator. Int J Radiat OncolBiol Phys. 2007;68(4):1260–
  12. Kry SF, Salehpour M, Followill D, Stovall M, Kuban DA, White RA, et al. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J RadiatOncol Bio Phys 2005;62(4):1195–
  13. Worm ES, Hoyer M, Fledelius W, Poulsen PR. Three-dimensional, time-resolved, intrafraction motion monitoring throughout stereotactic liver radiation therapy on a conventional linear accelerator. Int J Radiat Oncol Biol Phys. 2013;86(1):190-7.
  14. Munirathinam, N, Pawaskar, P. Dosimetric comparison of flattened and flattening filter-free beams for liver stereotactic body irradiation in deep inspiration breath hold, and free breathing conditions. Journal of Radiotherapy in Practice. 2019; 18(2):169-74.
  15. Reggiori G, Mancosu P, Castiglioni S, Along F, Pellegrini C, Lobefalo F, et al. Can volumetric modulated arc therapy with flattening filter free beams play a role in stereotactic body radiotherapy for liver lesions? A volume‐based analysis. Med Phys. 2012; 39 (2): 1112–
  16. MoonYM, Jeon W, Yu T, Bae SI, Kim JY, Kang JK, et al. “Which Is Better for Liver SBRT: Dosimetric Comparison Between DCAT and VMAT for Liver Tumors.” Frontiers in oncology. 2020;10:1170.
  17. Kamal R, Thaper D, Kumar R, Singh G, Yadav HP, Oinam AS, et al. Dosimetric impact of contrast-enhanced 4d computed tomography for stereotactic body radiation therapy of hepatocelluar carcinoma. Rep Pract Radiother Oncol. 2021; 26(4):598-604.
  18. Dawson LA, Brade A, ChoC, Kim J, Brierley J, Dinniwell R, et al. Phase I study of sorafenib and SBRT for advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2012; 84(3):S10–
  19. Benedict SH, Yenice KM, Followill D,GalvinJM, Hinson W, Kavanagh B, et al. Stereotactic body radiation therapy. The report of AAPM Task Group 101. Med Phys. 2010; 37(8):4078-101.
  20. Pan CC, Kavanagh BD, Dawson La, Li XA, Das SK, Miften M, et al. Radiation-associate deliver injury. Int. J. Radiat OncolBiol.Phys.2010;76(3),S94–
  21. Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. Radiation therapy oncology group: Radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 1993;27(5):1231-9.
  22. Lomax NJ, Scheib SG. Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 2003;55(5):1409–
  23. Lefkopoulos D, Grandjean P, Platoni K. Progress in optimizing dosimetry plans in stereotactic radiotherapy in the salt group. Cancer Radiother 1998; 2(2): 127–
  24. Van’t Riet A, Mak AC, Moerland MA, Elders LH, Van Der Zee W. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate. Int J RadiatOncolBiolPhys. 1997; 37(3):731–
  25. Washigton DC. International Commission on Radiation Units and Measurements: ICRU Report 62. Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU report 50) 1999..
  26. Kataria T, Sharma K, Subramani V, Karrthick KP, Bisht SS. Homogeneity Index: An objective tool for assessment of conformal radiation treatments. J Med Phys. 2012;37(4):207-13.
  27. Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformityindex. JNeurosurg. 2006;(Supplement):194–
  28. Wagner TH, Bova FJ, Friedman WA, Buatti JM, Bouchet LG, Meeks SL. A simple and reliable index for scoring rival stereotactic radiosurgery plans. Int J Radiat Oncol Biol Phys. 2003;57(4):1141–
  29. Bwzjak A, Paulus R, Gaspar LE, Timmerman RD, Straube WL, Ryan WF, et al. Primary study endpoint analysis for NRG oncology/RTOG 0813 trial of Stereotactic Body Radiation Therapy (SBRT) for centrally located Non-Small Cell Lung Cancer (NSCLC). Int J RadiatBiol Phys. 2016;1(94):5-6
  30. D’Souza WD, Rosen II. Nontumor integral dose variation in conventional radiotherapy treatment planning. Med Phys.2003;30(8):2065–
  31. Scorsetti M, Fogliata A, Castiglioni S, Bressi C, Bignardi M, Navarria P, et al. Early clinical experience with volumetric modulated arc therapy in head and neck cancer patients. Radiation Oncology. 2010; 5(1):1-0.
  32. Kragl G, Baier F, Lutz S,Albrich D, Dalaryd M, Kroupa B, et al. Flattening filter free beams in SBRT and IMRT: dosimetric assessment of peripheral doses. Z Med Phys. 2011;21(2):91–
  33. Ogata T, Nishimura H, Mayahara H, Uehara K, Okayama T. Identification of the suitable leaf margin for liver stereotactic body radiotherapy with flattening filter-free beams. Medical Dosimetry. 2017;42(4):268-72.
  34. Cardinale RM, Wu Q, Benedict SH, Kavanagh BD, Bump E, Mohan R.Determining the optimal block margin on the planning target volume for extracranial stereotactic radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.1999;45(2):515–
  35. Wakai N, Sumida I, Otani, Y. Optimization of leaf margins for lung stereotactic body radiotherapy using a flattening filter-free beam. Med. Phys. 2015;42:2125–
  36. Vieillevigne L, Bessieres S, Ouali M, Lanaspeze C. Dosimetric comparison of flattened and unflattened beams for stereotactic body radiation therapy: impact of the size of the PTV on dynamic conformal arc and volumetric modulated arc therapy. Phys Med. 2016;32(11):1405–
  37. BalajiSubramanian S, Sathiya K, Balaji K, Thirunavukarasu M, Phanikiran S, Rela M. Re-irradiation after stereotactic body radiotherapy for spine metastases from hepatocellular carcinoma: a case report. Rep Pract Radiother Oncol. 2022;26(6):1060-5.
  38. Kumar R, Yadav HP, Thaper D, Kamal R, Gupta A, Kirti S. Efficacy and toxicity of SBRT in advanced hepatocellular carcinoma with portal vein tumor thrombosis — a retrospective study. Rep Pract Radiother Oncol. 2021; 26(4):573–
  39. Lee PC. Monte Carlo simulations of the differential beam hardening effect. Med. Phys. 1997;24(9):1485 -9.
  40. Dawson LA, Winter KA, Katz AW, Schell MC, Brierley J, Chen Y, et al. NRG Oncology/RTOG 0438: A Phase 1 Trial of Highly Conformal Radiation Therapy for Liver Metastases. Pract Radiat Oncol. 2019;9(4):e386-e93.
  41. Lim DH, Yi BY, Mirmiran A, Dhople A, Suntharalingam M, D’Souza WD. Optimal beam arrangement for stereotactic body radiation therapy delivery in lung tumors. Acta Oncol. 2010;49(2):219‑24.
  42. Bignardi M, Cozzi L, Fogliata A, Lattua P, Mancosu P, Navarria P. Critical appraisal of volumetric modulated arc therapy in stereotactic body radiation therapy for metastases to abdominal lymph nodes. Int J RadiatOncolBiolPhys. 2009, 75(5):1570-7.
  43. Prendergast BM, Fiveash JB, Popple RA, Clark GM, Thomas EM, Minnich DJ, et al. Flattening filter-free linac improves treatment delivery efficiency in stereotactic body radiation therapy. J Appl Clin Med Phys. 2013;14(3):64–