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Introduction: Until now, the gravitational stress effect on the time domain and frequency heart parameters 
has been well-documented. However, cardiac signal dynamics have not been studied adequately under the 
influence of postural changes. In addition, the effect of body positions on the bio-signals has been 
investigated only from the aspect of feature extraction and the classification problem has not been 
considered. Among the physiological signals, the heart rate (HR) becomes an emerging modality that 
captured the attention of many researchers due to its noninvasive recording and its ability to assess 
autonomic tone modulation. This study attempted to classify cardiac dynamics concerning postural changes 
by evaluating different entropy algorithms.  
Material and Methods: In this study, the ECG signals of 10 participants (five women and five men with a 
mean age of 28.7±1.2 years) were designated from the database available at Physionet. First, the RR-intervals 
of electrocardiograms complying with the Pan-Tomkins procedure were estimated. Second, several entropy 
measures, including Shannon, log energy, sample, differential, Tsallis, Renyi, and approximate entropy, were 
calculated while participants were in supine rest, in two rapid head-up tilts, two stand-ups, and two slow 
head-up tilts. Then, we applied the support vector machine to classify different postures using one group vs. 
all other remaining groups (OVA) and one body posture vs. the resting supine position (BVR) in a k-fold 
cross-validation scheme.  
Results: Empirical results showed that using the entropy measure in a BVR scheme leads to higher of 
accuracy rates up to 100%.  
Conclusion: This framework opens an avenue of research for different gravitational stress-based conditions 
in a broad range of applications like disease management, sports, and astronautics. 
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Introduction 
Human is frequently under gravitational stress as a 

natural physical stimulus in active daily life. This 
stress exerts an influence on cardiovascular function. 
Changing body position from standing to sitting or 
lying down and vice versa affects the gradient of 
hydrostatic pressure from the bottom to top (foot to 
head), which results in a gravity-wise fluid shift. This 
change triggers neural responses in the autonomic 
nervous system (ANS) through sympathetic and 
parasympathetic arms [1, 2]. Consequently, 
cardiovascular functions are regulated, such that 
blood pressure fluctuations due to postural changes 
are moderated. As a result of the head-up tilt (HUT), a 
reduction in stroke volume/hypotension occurs as 
fluids move from the upper organs to the lower ones. 
Subsequently, through baroreceptors, the sympathetic 
activity of the heart and vasomotor is augmented, and 
the parasympathetic nerve activity of the heart is 
suppressed to increase heart rate and vascular 
resistance [1-3]. Reverse position change causes 
increased stroke volume/hypertensive effects, which 

induces the increased vagal activity of the heart and 
suppression of sympathetic activity. Accordingly, the 
heart rate and vascular resistance are diminished [1, 
4]. This involvement of the two autonomic nerve arms 
helps keep stable blood pressure. However, in some 
diseases, the shift in autonomic arms from the balance 
to the predominance of one arm is attenuated or 
absent like in a hypertensive and diabetic person [5, 
6]. Several clinical tests are administered to evaluate 
autonomic function/dysfunction [7]. Heart rate (HR) 
is a noninvasive one, which has been applied 
efficaciously to assess autonomic tone modulation. It 
is sensitive to gravitational stress forced by postural 
changes [8].  

Formerly, some researchers have been fascinated 
with investigating the effect of postural change and 
gravitational stress on cardiovascular parameters. In 
the study performed by Carnethon et al. [8], the mean 
and standard deviation (SD) of RR intervals were 
analyzed in the supine and upright positions 
considering demographic characteristics and 
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coronary heart disease (CHD) risk factors. Their 
results proved the possibility of detecting differences 
in cardiac autonomic balance by adopting these 
simple measures. Vuksanovic et al. [9] evaluated the 
effect of body posture on spectral indices of heart rate 
variability (HRV) signals in children and young adults 
with heart disease. Their findings emphasized the 
difference between HRV spectral measures of healthy 
and diseased subjects for the change of supine to 
upright posture. In most participants, the high-
frequency (HF) power of HRV was decreased in 
standing. In brief, the posture response is not 
distinctive in this age range because of the difference 
in HF power. Kubo et al. [10] attempted to examine 
the cardiac changes in six positions, including supine, 
30-degree semi-sitting, standing, supine, 90-degree 
sitting, and standing. They showed a difference in QTc 
interval on electrocardiograms (ECG) during postural 
changes, particularly from supine to sitting positions. 
In another study [11], the P-wave voltage on ECG was 
evaluated in patients with a history of syncope 
undergoing HUT. Their findings indicated the 
impaired P-wave peaking at 75% of HUT-triggered 
syncope. Ciliberti et al. [12] studied the efficiency of 
spectral HRV measures in predicting vasovagal 
syncope during HUT. They showed that the incidence 
of syncope during HUT could be predicted by the very 
low frequency (VLF) component at rest. Hnatkova et 
al. [13] examined the sex-related HRV responses to 
postural provocations. The subject's position was 
considered in the following arrangements four times, 
supine→sitting→standing→supine and 
supine→standing→sitting→supine. They analyzed the 
HR and HRV spectral measures. The results showed 
that regardless of similar increments in heart rate, 
women respond to standing by more considerable 
shifts in cardiac sympathovagal modulations. Kumar 
et al. [14] evaluated some time-domain measures of 
heart rate variability (HRV) under different postural 
positions. Precisely, they analyzed some time-domain 
indices including HR, RR-interval, root mean square of 
successive differences (RMSSD) between normal 
heartbeats, standard deviation of normal to normal 
RR intervals (SDNN), the number of normal to normal 
RR intervals which differ by more than 50 
milliseconds from the previous interval (NN50), 
proportion of NN50 (pNN50), and some frequency-
domain measures like normalized low frequency 
(LFnu), normalized high frequency (HFnu), the ratio 
of low frequency to high frequency (LF/HF) during 
sitting, standing, and lying positions. The results 
revealed a larger RR interval for lying posture 
followed by sitting and standing. Moreover, a higher 
LF/HF ratio was observed, emphasizing a more 
excessive sympathetic influence. 

A review of the literature shows that in all the 
works, morphological features, time-based 
characteristics, and spectral measures have been 
considered, but the dynamics of the heart signal have 

not been adequately evaluated during gravitational 
stress. However, the chaotic nature of the bio-data 
necessitates the use of nonlinear approaches. Entropy 
is a nonlinear measure that shows the time series 
uncertainty, irregularity, and complexity [15]. Up to 
now, several algorithms have been introduced for 
entropy calculation. The dynamics of the cardiac 
signal have not been studied adequately for postural 
changing conditions. Recently, Nardelli et al. [16] 
studied multichannel physiological complexity during 
postural changes. They analyzed HRV and blood 
pressure variability series. They examined the refined 
generalized multivariate multiscale fuzzy entropy for 
data analysis. The results indicated the possibility of 
statistically discriminating the resting and stand-up 
conditions using entropy. More recently, Rawal and 
Sethi [17] examined the postural-related changes 
(lying and standing) in the autonomic activity of 
healthy young women. They analyzed HRV by the 
autoregressive model as a frequency-domain 
approach and sample entropy and approximate 
entropy as nonlinear methods. Comparative analysis 
of the effect of the postural change on HRV was 
performed using paired t-test. Higher entropy 
measures in the lying posture were shown with no 
statistically significant difference between the groups 
for approximate entropy. Although the authors 
attempted to provide a dynamic analysis, some 
limitations should be noted.  (1) In [16], the authors 
studied multichannel data, including cardiovascular 
and diastolic blood pressure variability in a combined 
form. In this study, we used only one-channel data, 
which is both easier to record and user-friendly such 
that it can be implemented in a therapeutic system. 
(2) In both articles, one/two entropy measures during 
the supine resting state and active stand-up. In 
contrast, we studied six-position modes using 
different entropy indices. (3) In both studies, the 
authors only looked at the statistical differences 
between the features in the two resting positions and 
standing up. In the current study, we analyzed the 
ability of features to differentiate between groups in a 
classification problem. 

Literature review shows that the characteristics of 
cardiac signals in different postural conditions have 
been studied, and no attempt has been made to 
differentiate and classify them. Precisely, the entropy 
analysis of HRV was measured from different postural 
conditions, and its application for automated 
classification of these states should be proven using a 
machine learning approach. Previously, some studies 
have been conducted to investigate entropy measures 
of various biomedical time-series datasets [18-25]. 
Pieces of literature indicate the entropy capability in 
identifying the complexity present in bio-signal using 
computerized methods. The entropy measures are 
more resistant to noise than the conventional 
time/spectral HRV indices. 
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Figure 1. Recommended algorithm. The data includes available ECG 
signals in six postural positions. The second module estimates the 
RR intervals of ECGs using the Pan-Tomkins algorithm. Then, 
different entropy measures are calculated. Finally, the support 
vector machine (SVM) are applied to identify different postures 
using a k-fold cross-validation scheme and the accuracy, sensitivity, 
and F-score of the classifier are reported. 

 
They call for a shorter length of data compared to 

other nonlinear measures, like the Lyapunov 
exponents, fractals, and correlation dimensions [26-
27]. Thus, in short-term (about 5 minutes) HRV 
analysis, entropy may provide more reliable fallouts 
than other nonlinear characteristics [18]. 

This experiment was intended to develop an 
automated system for classifying postural changes 
using ECG signals. To this effect, we estimated the RR 
intervals of ECGs using the Pan-Tomkins algorithm. 
Then, some entropies were calculated for each body 
posture. Finally, we applied the support vector 
machine (SVM) to identify different postures using a 
k-fold cross-validation scheme. The planned system is 
shown in Figure 1. 

 

Materials and Methods 
Data 

In this study, the ECG signals were designated from 
the database available at Physionet [28]. It covers lead II 
ECG segments of 10 participants. Five women and five 
men, with a mean age of 28.7±1.2 years, participated in 
the trial. They were healthy and had a mean weight of 
70.6±4.5 kg and a mean height of 172.8±4 cm. Written 
consent was obtained from subjects before participating 
in the experiment. The signals were recorded using a 
standard clinical ECG monitor, FINAPRES, at a 
sampling rate of 250 Hz. 

Subjects were laid on a tilt table with foot support. 
Their postures changed according to a series of six 
positions. (1) Over 2 seconds, the bed was tilted to75-
degree (Rapid HUTs; R1 & R2). For each subject, it was 
rehearsed two times. (2) Two stand-ups (S1 & S2), (3) 
Over 50 seconds, the bed was tilted to75-degree (Low 
HUTs; L1 & L2). For each subject, it was repeated two 
times. Each of these phases lasts for three minutes. They 
were separated by 5 minutes, while the subject was in 

the resting supine baseline recording (RE). The 
arrangement of six intercessions was randomized for 
each participant. The signals were recorded at the MIT 
General Clinical Research Center [28]. 

In this study, we used both rapid HUTs, both low 
HUTs, and both stand-up positions. In addition, we 
considered the first resting supine recording condition as 
a baseline. The RR intervals of ECG signals during 
these postures were estimated using the Pan-Tomkins 
algorithm for further processing. 

 

Entropy indices 
Entropy is a quantifier that indicates the 

uncertainty/randomness of the data. It is also served as a 
measure of complexity and the amount of information 
confined in the time series [29]. To date, many 
algorithms have been introduced to appraise the entropy 
of the data. Here, we used several entropy measures to 
characterize the RR time series, including Shannon 
entropy (ShEn), Log energy entropy (LgEn), Sample 
entropy (SaEn), Differential entropy (DfEn), Tsallis 
entropy (TsEn), Renyi entropy (ReEn), and 
Approximate entropy (ApEn).  

Assume data of size N, i.e. {X1, X2, …, XN}, where its 
probability mass function is P(X). The ShEn is the 
simplest form and classic formulation of entropy. It is 
described as follows: 
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The LgEn is defined by equation (2): 
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Two values of m and r should be chosen to estimate 

SaEn. Subsequently, one should select template vectors 
(Xm) of length m. Additionally, d[Xm(i), Xm(j)], which 
shows the distance function should be selected. Adding 
the number of vector pairs of length m and m+1 
(symbolized by B and A), SaEn is described as follows: 

B

A
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In this study, we set m = 2 and r = 0.15 of the 

standard deviation of the data. 
The ReEn of order α (where α ≥ 0 and α ≠ 1) is 

calculated as follows: 
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The formulation of the TsEn (where α ≠ 1) is as 
equation (5): 
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Here, we set α=2 for both ReEn and TsEn. 
The DfEn is described as: 
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(6) 

  
For the DfEn, ReEn, and TsEn calculation, we 

exploited TIM MATLAB 1.2.0. Toolbox [30]. 

 

Classification 
In this work, the body postures were classified using 

the support vector machine (SVM). In this procedure, 
the input attributes were converted into a high-
dimensional space. A repetitive learning process, which 
depends on the input, delivers an optimum hyperplane 
with the utmost border between the classes. Lastly, these 
margins will sketch the decision borders over the data 
groups. The classification performance increases by 
growing the extent between the hyper-planes and data 
samples in different categories. To drive the SVM, a 
kernel function should be taken.  

This study applied a radial basis function (RBF) as a 
kernel function, which is a nonlinear one. In addition, a 
k-fold cross-validation scheme was implemented, where 
k varied in the range of 2 to 10; k = 2, 3, 4, 5, 6, 7, 8, 9, 
and 10. This delivers the profits of avoiding over-fitting 
and constructing reliable network performances. To 
categorize the body postures, we adopted two strategies: 
(1) one group vs. all other remaining groups (OVA) and 
(2) one body posture vs. the resting supine position 
(BVR). Accuracy (AC), Sensitivity (Se), and F1-Score 
(F1) were intended to assess the network performance. 
 

Results 
As described in previous sections, different entropy 

measures namely ShEn, LgEn, SaEn, DfEn, TsEn, ReEn, 

and ApEn of the RR intervals were calculated. Figure 2 

shows the mean and standard deviation (std) of the 

entropies in different positions. 

As the figure shows, for different postural body 

positions, the mean ShEn values vary between 61.45 (R1) 

and 90.85 (L1). The lowest mean LgEn is -203.5 for S1, 

and its highest value is -103.21 for RE. The highest/lowest 

mean SaEn is 1.65/1.35 for RE/L1. Inversely, the RE/L1 

has the lowest/highest mean DfEn (-2.26/-1.62). The 

lowest mean TsEn is -12.53 for L1, and its highest value is 

-5.9 for S1. The highest/lowest mean ReEn is -1.86/-2.39 

for L2/RE. The lowest mean ApEn is 0.96 for S1, and its 

highest value is 1.19 for RE. 

A significant difference between different body 

postures and resting supine position was inspected by 

ANOVA and Tukey procedure (also known as Tukey's 

Honest Significant Difference (HSD) test). Table 1 shows 

the statistical results, including the p- and F-values and the 

HSD test. 

Considering all positions, the most significant 

differences between the groups were found for the ApEn. 

In contrast, the results showed there were no significant 

differences between the ShEn of postural conditions and 

resting state. By examining the significance of the entropy 

values in different positions, it can be uncovered that the 

most significant differences were observed between the 

resting state and two slow HUTs (L1 & L2). 

As mentioned before, two strategies have been adopted 

to classify the body postures: OVA and BVR. The former 

evaluates the scheme's performance in separating each 

class from all other groups. The latter assesses the system’s 

performance in differentiating each category from a resting 

supine position. Figure 3 shows the OVA classification 

performances, and the BVR performances have been 

presented in Figure 4. 

 

 
 

Figure 2. Variations of different entropy measures in dissimilar postural conditions. Note- RE: rest, L1 & L2: two low HUTs; R1 & R2: two rapid HUTs; S1 

& S2: two stand-ups.  
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Table 1. Statistical differences between entropy measures of different postural states and resting positions using RR intervals. 

 

  p-value F-value  p-value F-value 

RE vs. L1 

ShEn 0.31 1.05 

RE vs. L2 

0.44 0.6 

LgEn 0.16 2.04 0.38 0.8 

SaEn 0.11 2.67 0.1 2.96 

DfEn 0.002* 12.23 0.002* 11.87 

TsEn 0.01* 8.24 0.018* 6.67 

ReEn 0.01* 7.93 0.017* 6.84 

ApEn 0.07 3.63 0.04* 4.79 

RE vs. R1 

ShEn 0.74 0.11 

RE vs. R2 

0.91 0.01 

LgEn 0.87 0.02 0.66 0.2 

SaEn 0.17 2.006 0.42 0.6 

DfEn 0.02* 6.02 0.1 3.005 

TsEn 0.051 4.34 0.2 1.74 

ReEn 0.06 3.93 0.17 1.96 

ApEn 0.007* 9.25 0.005* 9.97 

RE vs. S1 

ShEn 0.82 0.04 

RE vs. S2 

0.6 0.28 

LgEn 0.21 1.63 0.06 3.99 

SaEn 0.18 1.87 0.15 2.22 

DfEn 0.16 2.13 0.1 2.97 

TsEn 0.78 0.07 0.29 1.17 

ReEn 0.59 0.29 0.24 1.46 

ApEn 0.03* 5.3 0.01* 7.92 

*: HSD results 

 

 
(a)                          (b)                                                                                  (c) 

Figure 3. OVA classification performances. (a) Accuracy (AC), (b) Sensitivity (SE), and (c) F1-score (F1). 

Note – RE: rest, L1 & L2: two low HUTs; R1 & R2: two rapid HUTs; S1 & S2: two stand-ups. We used a k-fold cross-validation strategy for partitioning 

data into training and test; where k was set into 2 to 10. 
 

 

 
 

(a)                                                                             (b)                                                                                    (c) 

 
Figure 4. BVR classification performances. (a) Accuracy (AC), (b) Sensitivity (SE), and (c) F1-score (F1). 

Note – RE: rest, L1 & L2: two low HUTs; R1 & R2: two rapid HUTs; S1 & S2: two stand-ups. We used a k-fold cross-validation strategy for partitioning 

data into training and test; where k was set into 2 to 10. 
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The figure indicates that the highest OVA classification 

accuracy rate is about 90.91% for 6-fold cross-validation, 

while it varies in the range of about 85.7 to 90.9% for all k 

values. The sensitivity range is identical to the accuracy, 

and F1 values fluctuate between 92.31 and 95.24%. 

The figure indicates that the highest BVR classification 

accuracy rate is 100% for discrimination of all states using 

7-fold, 8-fold, 9-fold, and 10-fold cross-validation, while it 

varies in the range of about 57.14 to 100% for all k values. 

The sensitivity range is 60 to 100%, and F1 values 

fluctuate between 66.67 and 100%. The most inferior 

classification performances are indicated for 3-fold cross-

validation. 
 

Discussion 
In the present work, we evaluated the uncertainty of 

RR intervals during different postural positions using 
entropy measures. In addition, an automated system was 
developed to classify different bodily positions. In this 
regard, two strategies were adopted, namely OVA and 
BVR. The SVM was used to categorize the postures 
using a k-fold cross-validation scheme with different k 
values. Experimental results established fascinating 
achievements. (1) Using statistical analysis, ApEn 
revealed the most significant differences between the 
groups, while there were no significant differences 
between the ShEn of postural conditions and resting 
state. In addition, the most significant differences were 
perceived between the resting state and two slow HUTs 
(L1 & L2). (2) BVR outperformed the OVA in terms of 
higher classification performances, where the 

classification accuracy was 100%. (3) For each k of k-
fold, the OVA classification performance values were 
almost independent of the position understudy, although 
this was not the case in BVR. 

A summary of distinctive techniques used for 
evaluating the impact of postural body positions on the 
cardiac system is presented in Table 2.  

In [8], the authors evaluated the relation between the 
shift in HRV with postural change and the demographic 
characteristics as well as coronary heart disease (CHD) 
risk factors. Studying a large population sample 
revealed the shift in autonomic balance from active 
postural change using short-term HRV. The results 
indicated that obesity, hypertension, and diabetes cause 
smaller changes in R-R intervals and larger changes in 
SD of R-R intervals with a standing position. In 
contrast, no differences were found in the spectral 
measures by CHD risk factors. In [28], the short-term 
transient hemodynamic response to the upright posture 
for rapid tilt, slow tilt, and standing up was inspected 
using HR and arterial blood pressure. The signals 
steady-state responses were independent of the 
transition mode to the head-up position. Kubo et al. [10] 
showed an extended QTc interval in the supine position 
compared to that in the sitting and the standing position. 
The results of the Vuksanovich study [9] were not 
converged for changing position using frequency 
analysis of cardiac signal when. They reported two types 
of responses; in the majority of the subjects, a decrease, 
and in about one-third of subjects increase in HF power 
was observed.  

 
Table 2. Summary of different frameworks to assess the impact of postures on the cardiac system. 

 

Literature Subject Positions Methodology Results 

[8] 
7686 men and 
women 

Supine/ standing 

mean and standard deviation of R-R 
intervals considering demographic 
characteristics and coronary heart 
disease risk factors 

the possibility of detecting 
differences in cardiac autonomic 
balance using these simple 
measures 

[28] 
5 males and 5 
females 

Rest/ rapid tilts/ slow 
tilts/ stand up 

HR & arterial blood pressure 

A marked initial transient drop in 
mean arterial pressure and an 
increase in HR were seen during 
rapid tilt and stand-up 

[10] 72 males 

Supine/30 semi-
sitting/standing/ 

supine/90 sitting/ 
standing 

QT/QTc intervals 
A difference in QTc interval on 
ECG during supine to sitting 
position 

[9] 41 cardiac patients Supine/ standing 
spectral indices of HRV in children and 
young adults with heart disease 

A decrease in the high-frequency 
power of HRV in standing 

[13] 
175 females and 176 
males 

Supine/sitting/standing Spectral indices of HRV 
Women reacted to standing by 
more substantial shifts in cardiac 
sympathovagal modulations. 

[14] 
5 males and 5 
females 

Sitting/standing/lying 
time-domain and frequency-domain 
measures of HRV 

A larger RR interval and a higher 
LF/HF ratio for lying 

[16] 
5 males and 5 
females 

Supine/ standing Multiscale Fuzzy Entropy 
it is possible to statistically 
discriminate the positions 

[17] 20 females Supine/ standing 
the autoregressive model and SaEn and 
ApEn 

Higher entropy measures in the 
lying posture, but no statistically 
significant difference between the 
groups for ApEn 

Present 
work 

5 males and 5 
females 

Rest/ 2 rapid tilts/ 2 slow 
tilts/ 2 stand up 

Different entropy measures, SVM 
classification in two modes: OVA and 
BVR. The  

The most significant differences 
between the groups using ApEn 
The highest classification rate of 
100% for BVR 
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Hnatkova et al. [13] evaluated sex differences in HR 
and HRV responses to two postural provocative tests. 
Regardless of gender, switching from a supine position 
to standing leads to a sharp increase in HR elevation. 
However, HRV analysis established considerable 
differences in the HF and LF HR modulations in 
females and males. These results are in line with Rawal 
and Sethi’s study [17], where it was concluded that the 
HR is considerably higher and HRV is lower in standing 
as compared to the supine position. Evaluating different 
time-domain and frequency-domain indices of HR in 
sitting, standing, and sleeping conditions revealed a 
larger RR interval for sleeping followed by sitting and 
standing and a higher LF/HF ratio for sleeping [14]. The 
possibility of statistically discriminating the supine and 
standing positions using multiscale fuzzy entropy was 
also confirmed in [16]. The results of the present study 
are somewhat in line with the results of these studies, all 
of which indicate that some cardiac parameters are 
affected by gravitational stress. However, the results of 
our study also showed the separability of the parameters 
in a classification problem. 

\In brief, the experimental findings of this study 
indicate that our approach is comparable with the 
previously reported frameworks. In addition, we 
evaluated a classification approach to recognize the 
positions accurately. The proposed algorithm served to 
provide a reliable human postural classification system 
utilizing nonlinear dynamics of the cardiac system. This 
effort provides an applicable scheme, which would be 
suitable for several practical demands. Not only in some 
heart diseases such as diabetes and hypertension but also 
in some conditions like mountaineering, rock climbing, 
parachuting, high altitude, and astronautics, the effect of 
gravitational stress on physiological parameters, 
especially the heart, becomes a crucial issue.  

Notwithstanding the benefits mentioned, there are 
some deficiencies that to be considered. Here, the 
maximum accuracy was 100% employing a simple 
classifier, SVM. However, the number of participants 
for system evaluation was limited. A considerable 
number of signals in different postural positions should 
be examined to validate the framework. We managed 
the available database [28], where the ECG signals of 
healthy participants were provided. Since gravitational 
stress can be realized in different pathological as well as 
environmental conditions, the performance of the 
scheme should be carefully evaluated in the future. 
Another limitation is the dependence of HR changes in 
different positions on demographic factors [8, 13]. It is 
suggested that in future works, considering these factors, 
the results be examined more carefully. The available 
data are derived from the study of healthy individuals. 
Therefore, we cannot comment on whether there are 
similar dynamic changes in patients with cardiac and/or 
autonomic disorders such as diabetes. This should be 
explored in future work.  

 
 
 

Conclusion 
In this study, we tested two novel aspects in 

evaluating the effect of gravitational stress on cardiac 
parameters. First, we examined the entropy property as a 
nonlinear measure of the signals, while in previous 
studies, the signal dynamics under these conditions had 
not been investigated adequately. Second, we addressed 
the issue of a classification approach. To this effect, 
different entropy measures, namely ShEn, LgEn, SaEn, 
DfEn, TsEn, ReEn, and ApEn of the R-R intervals, were 
calculated while participants were in supine rest, in two 
rapid HUTs, two stand-ups, and two slow HUTs. Then, 
the OVA and BVR classification strategies were 
adopted using SVM. The proposed approach delivered 
an outstanding performance with high classification 
rates over the different postural changes. The best 
performance rates were 100% for the BVR scheme. The 
present methodology can be extended for several 
gravitational stress-based conditions in a massive range 
of applications like disease management, sports, and 
astronautics. 
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