Numerical Simulation of the Effect of Temperature- dependent Acoustic and Thermal Parameters on the Focal Temperature and Thermal Lesion of Biological Tissue Irradiated by HIFU

Document Type : Original Paper


1 School of Information Science and Engineering, Changsha Normal University, Changsha 410100, China

2 School of Physics and Electronics, Central South University, Changsha 410083, China


Introduction: Accurate temperature and thermal lesion prediction is very important for high-intensity focused ultrasound (HIFU) in the treatment of tumors. The traditional focal temperature and thermal lesion prediction methods usually use constant acoustic and thermal parameters. However, HIFU irradiation of biological tissue will cause its temperature rise and change the tissue characteristic parameters, which will affect the sound field and temperature field.
Material and Methods: The constant acoustic and thermal parameters, dynamic acoustic and thermal parameters, constant acoustic and dynamic thermal parameters, dynamic acoustic and constant thermal parameters were used for simulation by Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and Pennes biological heat transfer equation (PBHTE), and their effects and differences on the focal temperature and thermal lesion of biological tissue were compared and analyzed.
Results: The focal temperature predicted by constant acoustic parameters was less than that predicted by dynamic acoustic parameters, and the thermal lesion area predicted by constant acoustic parameters was also smaller than that predicted by dynamic acoustic parameters. On the premise of using dynamic acoustic parameters, the focal temperature predicted by dynamic thermal parameters was higher than that predicted by constant thermal parameters. When the acoustic parameters remained constant, the focal temperature predicted by dynamic thermal parameters was lower than that predicted by constant thermal parameters, but their predicted thermal lesion areas were almost the same.
Conclusion: The temperature-dependent acoustic and thermal parameters should be considered when predicting focal temperature and thermal lesion of biological tissue, so that doctors can use the appropriate thermal dose in the surgical treatment of HIFU.


Main Subjects

  1. Torres-de la Roche LA, Rafiq S, Devassy R, Verhoeven HC, Becker S, De Wilde R. Should Ultrasound-Guided High Frequency Focused Ultrasound Be Considered as an Alternative Non-Surgical Treatment of Uterine Fibroids in Non-Asiatic Countries? An Opinion Paper. Journal of Clinical Medicine. 2022;11(3): 839. DOI:10.3390/jcm11030839.
  2. Wong F, Wong PH, Li T KT .How to Avoid Medico-Legal Litigations in Performing High Intensity Focused Ultrasound Ablation for Treating Fibroids and Adenomyosis.Clinical and Experimental Obstetrics & Gynecology. 2023; 50(1):18. DOI:10.31083/j.ceog5001018.
  3. Díaz-Alejo, Jesús Frutos, Iciar Gonzalez Gomez, Julie Earl. Ultrasounds in cancer therapy: A summary of their use and unexplored potential.Oncology Reviews. 2022;16(1):531. DOI:10.4081/oncol.2022.531.
  4. Cindric H, Gasljevic G, Edhemovic I, Brecelj E, Zmuc J, Cemazar M, Seliskar A, Miklavcic D, Kos B. Numerical mesoscale tissue model of electrochemotherapy in liver based on histological findings. Scientific Reports. 2022 Apr 20;12(1):6476. DOI: 10.1038/s41598-022-10426-2.
  5. Lin CK, Oehm L, Liebler M, Brehm H, Jenderka KV, Majschak JP. Heating of Polymer Films Induced by HIFU: Study of Acoustic and Thermal Effects. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2019 Sep 11;67(6):1201-9. DOI:10.1109/TUFFC.2019.2940380.
  6. Mohammadpour M, Firoozabadi B. High intensity focused ultrasound (HIFU) ablation of porous liver: Numerical analysis of heat transfer and hemodynamics[J]. Applied Thermal Engineering. 2020; 170:115014. DOI: 10.1016/j.applthermaleng.2020.115014.
  7. Xin Y, Zhang A, Xu LX, Fowlkes JB. Numerical study of bubble cloud and thermal lesion evolution during acoustic droplet vaporization enhanced HIFU treatment. Journal of Biomechanical Engineering. 2022 Mar 1;144(3):031007. DOI:10.1115/1.4052374.
  8. Namakshenas P, Mojra A. Microstructure-based non-Fourier heat transfer modeling of HIFU treatment for thyroid cancer.Computer Methods and Programs in Biomedicine. 2020; 197:105698. DOI:10.1016/j.cmpb.2020.105698.
  9. Christopher T. HIFU focusing efficiency and a twin annular array source for prostate treatment.IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control. 2005; 52(9):1523-33. DOI:10.1109/tuffc.2005.1516025.
  10. Zhao P, Wang Y, Tong S, Tao J, Sheng Y. The Effects of Energy on the Relationship between the Acoustic Focal Region and Biological Focal Region during Low-Power Cumulative HIFU Ablation. Applied Sciences. 2023 Apr 1;13(7):4492. DOI:10.3390/app13074492.
  11. Guntur SR, Choi MJ. Influence of Temperature-Dependent Thermal Parameters onTemperature Elevation of Tissue Exposed to High-Intensity Focused Ultrasound: Numerical Simulation. Ultrasound in Medicine & Biology. 2015; 41(3):806-13. DOI:10.1016/j.ultrasmedbio.2014.10.008.
  12. Liu S, Yang Y, Li C, Guo X, Tu J, Zhang D. Prediction of HIFU propagation in a dispersive medium via khokhlov–Zabolotskaya–Kuznetsov model combined with a fractional order derivative. Applied Sciences. 2018 Apr 12;8(4):609. DOI:10.3390/app8040609.
  13. Kagami S, Kanagawa T, Ayukai T. Theoretical Improvement of a KZK equation for focused ultrasound in bubbly liquids with thermal effects. The Journal of the Acoustical Society of America. 2020; 148(4):2572. DOI:10.1121/1.5147139.
  14. Yuldashev PV, Karzova MM, Kreider W, Rosnitskiy PB, Sapozhnikov OA, Khokhlova VA. “HIFU Beam:” A Simulator for Predicting Axially Symmetric Nonlinear Acoustic Fields Generated by Focused Transducers in a Layered Medium. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2021 Apr 20;68(9):2837-52. DOI: 10.1109/TUFFC.2021.3074611.
  15. Wear KA, Shah A, Baker C. Spatiotemporal deconvolution of hydrophone response for linear and nonlinear beams—Part II: Experimental validation. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2022 Feb 10;69(4):1257-67. DOI: 10.1109/TUFFC.2022.3150179.
  16. Yoon K, Lee W, Lee JE, Xu L, Croce P, Foley L, et al. Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PloS one. 2019 Oct 24;14(10):e0224311. DOI:10.1371/journal.pone.0224311.
  17. Sojahrood AJ, Earl R, Haghi H, Li Q, Porter TM, Kolios MC, et al. Nonlinear dynamics of acoustic bubbles excited by their pressure-dependent subharmonic resonance frequency: influence of the pressure amplitude, frequency, encapsulation and multiple bubble interactions on oversaturation and enhancement of the subharmonic signal. Nonlinear Dynamics. 2021 Jan;103:429-66. DOI:10.1007/s11071-020-06163-8.
  18. Zhou Y, Yu Z, Ma Q, Guo G, Tu J, Zhang D. Noninvasive treatment-efficacy evaluation for HIFU therapy based on magneto-acousto-electrical tomography. IEEE Transactions on Biomedical Engineering. 2018 Jul 6;66(3):666-74. DOI:10.1109/TBME.2018.2853594.
  19. Bing C, Cheng B, Staruch RM, Nofiele J, Wodzak Staruch M, Szczepanski D, et al. Breath-hold MR-HIFU hyperthermia: phantom and in vivo feasibility. International Journal of Hyperthermia. 2019 Jan 1;36(1):1083-96. DOI:10.1080/02656736.2019.1679893.
  20. Yang D, Ni Z, Yang Y, Xu G, Tu J, Guo X, et al. The enhanced HIFU-induced thermal effect via magnetic ultrasound contrast agent microbubbles. Ultrasonics sonochemistry. 2018 Dec 1;49:111-7. DOI:10.1016/j.ultsonch.2018.07.031.
  21. Chang N, Lu S, Qin D, Xu T, Han M, Wang S, Wan M. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets. Ultrasonics Sonochemistry. 2018 Jul 1;45:57-64. DOI:10.1016/j.ultsonch.2018.02.033.
  22. Abbass MA, Killin JK, Mahalingam N, Hooi FM, Barthe PG, Mast TD. Real-time spatiotemporal control of high-intensity focused ultrasound thermal ablation using echo decorrelation imaging in ex vivo bovine liver. Ultrasound in medicine & biology. 2018 Jan 1;44(1):199-213. DOI:10. 1016/j.ultrasmedbio.2017.09.007.
  23. Raymond JL, Cleveland RO, Roy RA. HIFU-induced changes in optical scattering and absorption of tissue over nine orders of thermal dose. Physics in Medicine and Biology. 2018;63. DOI:10.1088/1361-6560/aaed69.
  24. Choi MJ, Guntur SR, Lee JM, Paeng DG, Lee KI, Coleman A. Changes in ultrasonic properties of liver tissue in vitro during heating-cooling cycle concomitant with thermal coagulation. Ultrasound in medicine & biology. 2011 Dec 1;37(12):2000-12.
  25. Sarkar R, Kumar Pandey P, Kundu S, Panigrahi PK. Exact sub and supersonic pressure wave-fronts in nonlinear thermofluid medium. Waves in Random and Complex Media. 2021 Jul 23:1-4. DOI:10.1080/17455030. 2021.1954263.
  26. Dong H, Liu G, Tong X. Influence of temperature-dependent acoustic and thermal parameters and nonlinear harmonics on the prediction of thermal lesion under HIFU ablation. Math. Biosci. Eng. 2021 Jan 1;18:1340-51. DOI:10. 3934/mbe.2021070.
  27. Horiba T, Ogasawara T, Takahira H . Cavitation inception pressure and bubble cloud formation by backscattering from bubble interfaces in HIFU. 21st International Symposium on Nonlinear Acoustics. 2018;34:045041. DOI: 10.1121/2.0000919.
  28. EM Ponomarchuk, C Hunter, M Song, et al. Mechanical damage thresholds for hematomas near gas-containing bodies in pulsed HIFU fields.Physics in Medicine & Biology.2022; 67(21): 215007.DOI 10.1088/1361-6560/ac96c7.
  29. Pahk KJ. Control of the dynamics of a boiling vapour bubble using pressure-modulated high intensity focused ultrasound without the shock scattering effect: A first proof-of-concept study. Ultrasonics Sonochemistry. 2021 Sep 1;77:105699. DOI:10.1016/j.ultsonch.2021.105699.
  30. Tan Q, Zou X, Ding Y, Zhao X, Qian S. The influence of dynamic tissue properties on HIFU hyperthermia: A numerical simulation study. Applied Sciences. 2018 Oct 16;8(10):1933. DOI:10. 3390/app8101933.
  31. Andreozzi A, Brunese L, Iasiello M, Tucci C, Vanoli GP. Variable porosity-based bioheat model vs variable perfusion-based Pennes’ equation: A comparison with in vivo experimental data. Thermal Science and Engineering Progress. 2022 Oct 1;35:101469. DOI: 10.1016/j.tsep.2022.101469.
  32. Mohammed BN, Ismael DS. A Computational Model for Temperature Monitoring During Human Liver Treatment by Nd: YaG Laser Interstitial Thermal Therapy (LITT). Aro-The Scientific Journal Of Koya University. 2022;10(2):38-44. DOI:10.14500/aro.10949.
  33. Haddadi S, Ahmadian MT. Analysis of nonlinear acoustic wave propagation in HIFU treatment using Westervelt equation. Scientia Iranica. 2017; 25(4): 2087-97. DOI: 10.24200/sci.2017.4496.
  34. Zou X, Dong H, Qian SY. Influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy: Numerical simulation. Chinese Physics B. 2020; 29(3):034305. DOI: 10.1088/1674-1056/ab6c4f.
  35. Anneveldt KJ, van’t Oever HJ, Verpalen IM, Nijholt IM, Bartels W, Dijkstra JR, et al. Increased MR-guided high intensity focused ultrasound (MR-HIFU) sonication efficiency of uterine fibroids after carbetocin administration. European Journal of Radiology Open. 2022 Jan 1;9:100413. DOI:10.1016/j.ejro.2022.100413.
  36. Zhou Y, Cunitz BW, Dunmire B, Wang YN, Karl SG, Warren C, et al. Characterization and Ex Vivo evaluation of an extracorporeal high‐intensity focused ultrasound (HIFU) system. Journal of Applied Clinical Medical Physics. 2021 Sep;22(9):345-59. 2021; 22(9): 345-59. DOI:10.1002/acm2.13074.
  37. Dong H, Xiao ZO, Qian S. Simulation study on the influence of temperature- dependent acoustic-thermal parameters on tissue lesion under HIFU irradiation. University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics. 2020; 82(2):207-20.






Volume 20, Issue 5
September and October 2023
Pages 257-265
  • Receive Date: 19 May 2022
  • Revise Date: 03 August 2022
  • Accept Date: 26 September 2022