Neutron Contamination Detection of Medical Linear Accelerators by Thick Gas Electron Multiplier Detector in Self-Quenching Streamer Mode

Document Type : Original Paper


1 Department of Physics, Payame Noor University (PNU), Tehran, Iran

2 Kerman Graduate University of Advance Technology

3 Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Haftbagh Blvd., Kerman, Iran


Introduction: The presence of neutron contamination in medical linear accelerators poses a significant challenge in radiation therapy. Numerous studies have addressed the estimation of neutron levels, often relying on electronic equipment to extract simulation results. This study introduces an innovative neutron detection method that eliminates the need for electrical system with complex circuit.
Material and Methods: Neutron contamination arises in VARIAN linear accelerators through the interaction of energetic photons with heavier elements in the accelerator head, such as Tungsten. The primary objective of this study is to investigate neutron contamination in the VARIAN
linear accelerators using a Thick Gas Electron Multiplier (THGEM) detector in the Self-Quenching Streamer (SQS) mode through Monte Carlo simulation. The detection system designed in this study involves of two main parts. 1- Conversion material to convert neutrons to protons. 2- THGEM in SQS mode to detect protons. In this structure, the detection of protons gives an estimate of neutron contamination.
Results: The findings indicate that, in the designed detection system, a distance of 0.5 cm from the converter is an optimal location for the THGEM. When the THGEM's minimum voltage is set at 700 volts, SQS mode occurs in most THGEM holes.
Conclusion: The simple structure is one of the advantages of detection system in this research. Its cost-effectiveness, featuring fewer electrical tolerances, lightweight design, and adaptability in various sizes are additional advantages, making it a viable option for neutron contamination detection.


Main Subjects

  1. Mayles P, Nahum A, Rosenwald J-C. Handbook of radiotherapy physics: theory and practice: CRC Press. 2007.
  2. Pena J, Franco L, Gomez F, Iglesias A, Pardo J, Pombar M. Monte Carlo study of Siemens PRIMUS photoneutron production. Phys Med Biol. 2005;50 (24):5921–33
  3. Vega-Carrillo HR, Hernandez-Almaraz B, Hernandez-DavilaVM, Ortız-Hernandez. A Neutron spectrum and doses in a 18 MV LINAC. J Radioanal Nucl Chem. 2010;283(1):261–
  4. Chadwick MB, Oblozinsky P, Blokhin A, Fukahori T, Han Y, Lee YO, et al. Handbook on photonuclear data for applications: cross sections and spectra. IAEA TECH-DOC 1178. 2000.
  5. Garnica-Garza HM. Characteristics of the photoneutron contamination present in a high-energy radiotherapy treatment room. Phys Med Biol. 2005;50 (3):531–
  6. Martinez-Ovalle SA, Barquero R, Gomez-Ros JM, Lallena AM. Ambient neutron dose equivalent outside concrete vault. rooms for 15 and 18 MV radiotherapy accelerators. Radiat Prot Dosim. 2012;148(4):457–
  7. Carinou E, Stamatelatos IE, Kamenopoulou V, Georgolopoulou P, Sandilos P. An MCNP-based model for the evaluation of the photoneutron dose in high energy medical electron accelerators. Phys Med. 2005;21(3):95–
  8. Saeed MK, Moustafa O, Yasin OA, Tuniz C, Habbani FI. Doses to patients from photoneutrons emitted in a medical linearaccelerator. Radiat Prot Dosim. 2009;133(3):130–
  9. Vega-Carrillo HR, Martinez-Ovalle SA, Lallena AM, Mercado GA, Benites-Rengifo JL. Neutron and photon spectra in LINACs. Appl Radiat Isot. 2012;71:75–
  10. Ongaro C, Zanini A, Nastasi U, Rodenas J, Ottaviano G, Manfredotti C. Analysis of photoneutron spectra produced in medical accelerators. Phys Med Biol. 2000;45(12):55–
  11. Lin JP, Liu WC, Lin CC. Investigation of photoneutron dose equivalent from high-energy photons in radiotherapy. Appl Radiat Isot.2007;65(5):599–
  12. Hsu FY, Chang YL, Liu MT, Huang SS, Yu CC. Doseestimation of the neutrons induced by the high energy medical linear accelerator using dual-TLD chips. Radiat Meas. 2010;45(3-6):739–
  13. Mukherjee B, Makowski D, Simrock S. Dosimetry of highenergy electron linac produced photoneutrons and the bremsstrahlung gamma-rays using TLD-500 and TLD-700 dosimeter pairs. Nucl Instrum Methods Phys Res A. 2005;545(3):830–
  14. Alem-Bezoubiri A, Bezoubiri F, Badreddine A, Mazrou H, Lounis-Mokrani Z. Monte Carlo estimation of photoneutrons spectra and dose equivalent around an 18MV medical linear accelerator. Radiat Phys Chem. 2014;97:381–
  15. Al-Ghamdi H, Al-Jarallah MI, Maalej N. Photoneutron intensity variation with field size around radiotherapy linear accelerator 18-MeV X-ray beam. Radiat Meas. 2008;43:S495–
  16. Barquero R, Mendez R, Vega-Carrillo HR, Iniguez MP, Edwards TM. Neutron spectra and dosimetric features around an 18 MV linac accelerator. Health Phys. 2005;88(1):48–
  17. Domingo C, Garcia-Fuste MJ, Morales E, Amgarou K, Terron JA, Rosello J, et al. Neutron spectrometry and determination of neutron ambient dose equivalents in different LINAC radiotherapy rooms. Radiat Meas. 2010;45(10):1391–
  18. Barros S, Mares V, Bedogni R, Reginatto M, Esposito A, Goncalves IF, et al. Comparison of unfolding codes for neutron spectrometry with Bonner spheres. Radiat Prot Dosim. 2014;161(1-4):46–
  19. Garny S, Mares V, Roos H, Wagner FM, Ruhm W. Measurementof neutron spectra and neutron doses at the Munich FRM II therapy beam with Bonner spheres. Radiat Meas. 2011;46(1):92–
  20. Howell RM, Kry SF, Burgett E, Hertel NE, Followill DS. Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators. Med Phys. 2009;36(9):4027–
  21. Vega-Carrillo HR, Ortiz-Hernandez A, Hernandez-Davila VM, Hernandez-Almaraz B, Montalvo TR. H*(10) and neutron spectra around linacs. J Radioanal Nucl Chem. 2010;283(2):537–
  22. Banaee N, Goodarzi K, Nedaie H A. Neutron contamination in radiotherapy processes: a review study. Journal of Radiation Research. 2021;62(6):947-54.
  23. Tai DT, Loan TT, Sulieman A, Tamam N, Omer H, Bradley DA. Measurement of Neutron Dose Equivalent within and Outside of a LINAC Treatment Vault Using a Neutron Survey Meter. Quantum Beam Science. 2021;5(4):33.
  24. Elmtalab S, Abedi I, Alirezaei Z, Choopan Dastjerdi MH, Geraily G, Karimi AH. Semi-experimental assessment of neutron equivalent dose and secondary cancer risk for off-field organs in glioma patients undergoing 18-MV radiotherapy. Plos one. 2022;17(7):e0271028.
  25. Sohrabi M, Torkamani ME. Breakthrough whole body energy-specific and tissue-specific photoneutron dosimetry by novel miniature neutron dosimeter/spectrometer. Scientific Reports. 2021;11(1):20552.
  26. Pietropaolo A, Claps G, Fedrigo A, Grazzi F, Höglund C, Murtas F, et al. Neutron diffraction measurements on a reference metallic sample with a high-efficiency GEM side-on 10B-based thermal neutron detector. EPL (Europhysics Letters). 2018;121(6): 62001.
  27. Santoni A, Celentano G, Claps G, Fedrigo A, Höglund C, Murtas F, et al. Physical–chemical characterization of a GEM side-on 10B-based thermal neutron detector and analysis of its neutron diffraction performances. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018;906:83-7.
  28. Song D, Choi K, Jeng Y, Kang Y, Lee J S H, Park I, et al. Neutron Detection using a Gadolinium-Cathode GEM Detector. arXiv preprint arXiv:2012. 2020;02546.
  29. Zhou J, Zhou J, Zhou X, Zhu L, Wei Y, Xu H, et al. A sealed ceramic GEM-based neutron detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2021;995:165129.
  30. Ohshita H, Uno S, Otomo T, Koike T, Murakami T, Satoh S, et al. Development of a neutron detector with a GEM. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2010;623(1): 126-8.
  31. Croci G, Claps G, Cavenago M, Dalla Palma M, Grosso G, Murtas F, et al. nGEM fast neutron detectors for beam diagnostics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2013;720: 144-8.
  32. Zhou J, Zhou X, Zhou J, Jiang X, Yang J, Zhu L, et al. A novel ceramic GEM used for neutron detection. Nuclear Engineering and Technology. 2020;52(6):1277-81.
  33. Yang L, Zhou J-R, Sun Z-J, Zhang Y, Huang C-Q, Sun G-A, et al. Experimental research on a THGEM-based thermal neutron detector. Chinese Physics C. 2015;39(5): 056002.
  34. Anjomani Z, Hanu A, Prestwich W, Byun S. Monte Carlo design study for thick gas electron multiplier-based multi-element microdosimetric detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.2014;757: 67-74.
  35. Souri R, Negarestani A, Mahani M. A new approach for direct imaging of Alpha radiation by using Micro Pattern Gas Detectors in SQS mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018;884: 128-35.
  36. Souri R, Negarestani A, Mahani M. Alpha radiation detection by using of Micro Pattern Gas Detectors in SQS mode. Iranian Journal of Radiation Safety and Measurement. 2017; 5(2):29-38.
  37. Hashemi S M, Negarestani A. Investigation of alpha particle tracks in GEM-type structures based on SQS mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.2019;913: 20-7.
  38. Glenn E Knoll, Radiation Detection and Measurement. Third Edition. 2000; chapter 15, Page 554, ISBN 0-471-07338-5.
  39. Werner C J. MCNP users-manual-code version 6.2. Los Alamos national laboratory. 2017.
  40. Zarei N, Rezaie M R, Jomehzadeh A. Neutron leakage Calculation of Varian accelerator in Kerman Radiotherapy and Oncology Center, National Conference on Technological Advances in Applied Physics, Kerman-Iran, March 2022.
  41. Khezripour S, Negarestani A, Rezaie M. A New Approach for Alpha Radiography by Triple THGEM using Monte Carlo Simulation and Measurement. Journal of Instrumentation. 2018:13(05): P05024.
  42. Kotba NA, Tohamyb MM, Soliemanb AHM, El-Zakla T, Amer TZ, Elmeniawi S, et al. Characterization of 241am-be neutron source using threshold foil activation technique. Al-Azhar Bulletin of Science. 2019; 30(1-B):48-53.
  43. Schüler E, Trovati S, King G, Lartey F, Rafat M, Villegas M, et al. Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator. International Journal of Radiation Oncology*Biology*Physics. 2017;97(1):195-203.
  44. Hill T M. Neutron Fluence Measurements of the Siemens Oncor Linear Accelerator Utilizing Gold Foil Activation. Medical University of Ohio. 2005.