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Introduction: Simulation in Positron Emission Tomography (PET) studies is considered as an effective 
approach to test new mathematical methods for image processing and lesion detection. It’s an alternative way 
to overcome the drawback of obtaining a sufficient set of clinical images with known truth about the 
presence or absence of lesions. This work aimed to simulate, in a new and fast way, realistic dynamic 18F-
FDG PET images for lesion detectability investigation and scan time reduction. 
Material and Methods: The 4D-XCAT phantom was utilized in this work. The three-compartment model 
was used to simulate the Time Activity Curves (TAC’s) of 18F-FDG. The arterial input function of 18F-FDG 
was modeled using a parametric function. The TAC’s of 11 tissues defined in the 4D-XCAT phantom were 
simulated. The activity values were calculated from the TAC’s considering a real 18F-FDG dynamic PET 
acquisition protocol. These activity values were assigned to each voxel of 4D-XCAT to produce 28 activity 
maps. The GE Discovery PET/CT 710 scanner, modeled in the STIR platform, was used to generate the 
sinograms. OSMAPOSL Algorithm was considered to reconstruct dynamic 18F-FDG PET images.  
Results: Realistic dynamic 18F-FDG PET images were generated. The qualitative and quantitative 
comparison showed a good agreement between the 4D-XCAT phantom images before and after the 
reconstruction procedure. The computation time of the reconstruction procedure was 8.76 min/frame.  
Conclusion: The present study was found to be a promising and realistic approach to dynamic PET dPET 
imaging optimization in terms of scanning time reduction and lesion detectability amelioration. 
  

Article history: 
Received: Nov 28, 2022 
Accepted: May 13, 2023 

 

 

Keywords:  
Computer Simulation 
Positron-Emission 
Tomography 
Imaging Phantom 
Image Reconstruction  

 
 
 
 
 

►Please cite this article as: 
Bezoubiri F, Zidi T, Kharfi F. Dynamic 18F-FDG PET Images Simulation Using 4D-XCAT Phantom and Kinetic Modeling for Lesion 
Detectability Investigation and Scan Time Reduction Purpose. Iran J Med Phys 2024; 21: 84-92. 10.22038/IJMP.2023.69200.2216.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
. 
 

 

Introduction 
Positron emission tomography (PET) is a medical 

imaging modality widely used in nuclear medicine for 
cancer diagnosis. It allows three-dimensional 
distribution measurements of a molecule marked by a 
positron emitter. Dynamic PET acquisition with [18F] 
FluoroDeoxyGlucose (dPET 18F-FDG) plays an 
important role in the initial diagnosis and 
characterization of tumour [1-4]. It is often used with 
kinetic modeling to estimate the physiological 
parameters that characterize the functional state of 
tissue, such as 18F-FDG metabolic rate. However, 
dPET remains limited to research since it suffers from 
several drawbacks such as long-time duration of data 
acquisition and the high noise of the images [5, 6]. 

Several works have been performed on dPET to 
improve tumor detection and reduce the scanning 
time using patient data [7-10]. In the work of Fahrni et 
al [10], it has been shown that the parametric images 

issued from dPET can improve tumor detectability. 
Grkovski et al., [7] have shown that the acquisition 
time could be reduced to 20 min in the case of head 
and neck cancers. The kinetic parameters obtained 
were rather equivalent in a comparison study 
investigated by Torizuka et al [8] using 30 min and 60 
min acquisition protocols. The work of Visser et al. [9] 
on 13 patients with non-small cell lung carcinoma 
found an agreement between 30 min and 50 min 
acquisition protocols. However, the most drawback of 
using the clinical images is to obtain a sufficient set of 
clinical images with known truth about the presence 
or absence of lesions. Furthermore, the patient clinical 
data aren’t always available. To overcome these 
drawbacks, the simulation approach is highly 
recommended. It is considered a substantial way for 
researchers to provide images for developing and 
testing new mathematical methods for image 
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processing and lesion detection. The simulated images 
can be considered clinically realistic if a validated PET 
imaging system combined with a realistic model of the 
human body and an actual 18F-FDG activity 
distribution are used [11].  

Many studies have been carried out to simulate the 
dynamic 18F-FDG PET images with different 
approaches and purposes. Karakatsanis et al. [12], 
simulated dynamic 18F-FDG PET images using 4D-
XCAT phantom and the Monte Carlo (MC) code GATE to 
optimize clinical whole-body parametric imaging 
protocols. However, the MC simulation is time-
consuming. Häggström et al. [13], developed Dynamic 
PET Step, dPETSTEP, a simulator for dPET simulations 
in order to study the kinetic modeling and parametric 
images. This simulator is based on simple scatter and 
random models, which make it as not appropriate to 
study these phenomena.   

Karakatsanis et al. [14] utilized a numerical 
phantom combined with the Software for Tomographic 
Image Reconstruction (STIR) to generate simulated 
images with different levels of Poisson noise. STIR is a 
powerful tool for image reconstruction and simulation. 
It offers a range of reconstruction algorithms, including 
filtered back projection, expectation-maximization, and 
Ordered Subsets Expectation-Maximization (OSEM). 
However, users may need to handle a considerable 
number of functions to perform simulations effectively. 

Hence, this work aimed to simulate, in an easy and 
fast way, realistic dynamic 18F-FDG PET images for 
lesion detectability investigation and scan time 
reduction purposes. To do so, the well-known 
4D Extended Cardiac‐Torso (4D-XCAT) phantom and 
the Software for Tomographic Image Reconstruction 
(STIR) were used. Time Activity Curves (TAC’s) of the 
different tissues of the 4D-XCAT phantom were 
calculated using the three-compartment model and 

simulated input function. To efficiently perform the 
simulation, an in-house MATLAB program was 
implemented to connect the simulation parts and to 
handle all STIR functions used in this work.  

 

Materials and Methods 
Activity maps based on numerical phantom 

In this study, we have used the realistic 4D-XCAT 
human torso phantom to model the time-dependent activity 
and the 511 keV attenuation maps [15, 16]. This phantom 
has found numerous applications in different domains such 
as radiotherapy and imaging [15, 16, 17, 18, 19, 20]. 

The phantom used in our work contained 1200 slices 
with a voxel size of 2.5 x 2.5 x 2.5 mm3. The image matrix 
size was 256 × 256 pixels. A lesion of 9 mm diameter was 
modeled and inserted at the top of the liver in the main 
phantom 4D-XCAT. The attenuation maps generated were 
used for the attenuation correction in the image 
reconstruction procedure. 

The activity maps were generated following four steps: 
Step 1 includes the calculation of TAC’s for different 

tissues of the 4D-XCAT phantom. The calculation was 
performed using actual 18F-FDG kinetic micro-parameters, 
an effective blood plasma volume values (see Table 1) [21-
22], and a modeled input function. In step 2, a series of 
dynamic activity maps were generated using a real 
acquisition protocol. The protocol used consists of 28 
frames recorded during 55 min: 9*10s, 3*30s, 4*60s, 
4*120s and 8*300s [23]. Step 3 concerns the calculation of 
the activity values according to each time frame. In step 4, 
the calculated activity values were assigned to the voxels of 
each region of the 4D-XCAT phantom to produce 28 
activity maps.  The whole steps followed to generate the 
activity maps are illustrated in figure 1. These steps were 
performed using in-house script implemented in MATLAB 
environment, version R2017a.  

 

 
 
Figure 1. Steps followed to generate the activity maps 

https://aapm.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=H%C3%A4ggstr%C3%B6m%2C+Ida
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Modelization of the 18F-FDG Time Activity Curves 
The TAC's of 18F-FDG were generated using the 

standard three-compartment model [24]. A descriptive 
schema of this model is illustrated in figure 2.  

 In the model used, Cp(t) is the input function, Ce(t) and 

Cm(t) are the concentrations of unmetabolized, 
metabolized and trapped 18F-FDG in tumor cells, 
respectively, expressed in kBq/mL.  

 k1⟶4 are parameters describing the exchanges 
between the compartments.  

 k1 (min−1) and k2 (min−1) represent the 
reversible exchanges of FGD between the 
blood and tissue compartments; 

 k3 (min−1) represents the phosphorylation of 
the FDG 18FDG-6-PO4 ; 

 k4 (min−1) represents the effect of possible 
dephosphorylation of FDG-6-PO4 to 18F-FDG. 

 The values of these parameters, as reported in 
the literature, are given in the Table 1. 

The 18F-FDG kinetics is described by the following 
differential equations: 

 
𝒅Ce(t)

𝒅𝒕
=  k1 Cp(t)-( k2 + k3) Ce(t)+ k4 Cm(t)             (1) 

𝒅Cm(t)

𝒅𝒕
=  k3 Ce(t)- k4 Cm(t)                       (2) 

CFDG(t) = Ce(t) + Cm(t) + VpCp(t)                           (3)  

CFDG(t) being the total concentration of the 18F-FDG 

in a Region Of Interest (ROI), and Vp represents the 

effective blood plasma volume contained in the ROI. 
The solution of this system of equation gives: 

CFDG =  Ki  ∫ Cp(t)dt + VpCp(t)                (4) 

With: Ki =
k1∗k3

k2+k3
                                            (5) 

 
To generate the 18F-FDG TAC’s, we have modeled 

the input function Cp(t) using the parametric function 

proposed by D. Feng [25-28]. The mathematical 
expression of this model is given as follows: 

 
 

Cp(t) = (A1t − A2 − A3)eλ1t + A2eλ2t + A3eλ3t       (6) 

with: 
 

 λ1 (min-1), λ2 (min-1) and λ3 (min-1) are the 
eigenvalues of the model. 

 A1 (μCi/ml/min), A2 (μCi/ml) and A3(μCi/ml) are 
the coefficients of the model. 

The values of the λ1⟶3 and A1⟶3 are repoted in 
table 2.  

 
 
 

 
 

Table 1. The 18F-FDG kinetic micro-parameters and effective blood plasma volume Vp used for the different organs.  

 

organs k1 (ml/min/ml) k2 (min-1) k3 (min-1) k4 (min-1)  Vp 

kidney 0.2630 0.2990 0.0000 0.0000 0.4380 

spleen 1.2070 1.9090 0.0080 0.0140 0.0000 

liver 1.2560 1.3290 0.0020 0.0020 0.1650 

marrow 0.4250 1.0550 0.0230 0.0130 0.0400 

myocardium 0.1960 1.0220 0.1490 0.0100 0.5450 

lung 0.1080 0.7350 0.0160 0.0130 0.0170 

aorta 0.0000 0.0000 0.0000 0.0000 1.0000 

soft tissue 0.0470 0.3250 0.0840 0.0000 0.0190 

ventricle 0.0000 0.0000 0.0000 0.0000 1.0000 

stomach 0.6140 1.8850 0.0710 0.0310 0.0630 

tumour 0.1860 0.4380 0.3360 0.0000 0.0800 

 
 

 
 
Figure 2. A schema showing the three-compartment model of 18F-FDG uptake. k1⟶4 are the parameters describing the exchanges between the 

compartments. Cp(t) is the input function. Ce(t) and Cm(t) are the concentrations of unmetabolized, metabolized and trapped 18F-FDG in tumor 

cells, respectively.   
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Table 2. Coefficients and eigenvalues of the parametric function used to model the input function.   
 

A1 (μCi/ml/min) A2 (μCi/ml) A3 (μCi/ml) λ1 (min-1) 𝛌𝟐 (min-1) 𝛌𝟑 (min-1) 

851.1225 21.8798 20.8113 -4.1339 -0.1191 -0.0104 

 

 
 
Figure 3. Workflow showed the steps followed in the reconstruction procedure. 

 

Scanner geometry, sinograms generation and image 

reconstruction 
In this study, STIR software version 4.0.0-alpha was 

employed [29]. Firstly, we have used STIR ray tracing 
technique to perform the forward projection of the 4D-
XCAT activity maps in order to generate a free-noise 
sinograms.  The model of Discovery PET/CT 710 
scanner manufactured by General Electric (GE) 
Healthcare Company was considered. The main physical 
characteristics of this scanned are reported in Table 3. 
Secondly, the free-noise sinograms generated were 
attenuation corrected by calculating the attenuation 
coefficient from the 4D-XCAT attenuation maps. Then, 
a noisy sinograms were obtained by corrupting the 
corrected sinograms with Poisson noise. Finally, these 
sinograms were reconstructed using Ordered Subsets-
Maximum A posteriori Probability-One Step Late 
(OSMAPOSL) algorithm with 35 iterations and 1 
subset. The same reconstruction procedure was applied 
to all the 28 frames covering the liver region. The 
reconstructed image size was 256 x 256 pixels, with the 

voxel size of 2.5 x 2.5 mm2. The steps of the 
reconstruction procedure were shown in Figure 3. 

We have implemented and used a MATLAB script 
to handle and connect all STIR functions used, from the 
forward projection to the reconstruction. The script was 
run on workstation HP Z8 64 using PARFOR (PARallel 
FOR) loop. This loop was used to execute iterations in 
parallel, which can significantly improve the 
performance of computations on multi-core processors. 
It's similar to the standard FOR loop but with the added 
capability of parallel execution. The workstation used, 
powered with Windows 10, is equipped with 20 physical 
CPUs, Intel© Xeon© Silver 4210 CPU @2.20 
GHz, 64 GB RAM, and NVIDIA Quadro P400 graphic 
card with 2 GB RAM.  

The qualitative and quantitative evaluation of the 
images reconstructed were performed using AMIDE 
open source software, version 1.0.4  [30].   
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Results 
The input function obtained using equation 6 and the 

parameters values reported in Table 2, is given in Figure 4-

A. TAC of 11 tissues modeled in 4D-XCAT phantom were 

generated, assuming the standard 3-compartment model, 

the calculated input function and kinetic physiological 

parameters of the 18F-FDG. The TAC’s generated are 

illustrated in Figure 4-B.  As it is well shown in Figure 4-A 

& 4-B, the metabolic characteristics of the 18F-FDG in 

terms of injection, uptake, and elimination are distinctive.  

The TAC's obtained were used to generate the 18F-FDG 

dynamic activity maps.  

Figure 5 shows the transverse, coronal and sagittal 

slices of the 18F-FDG activity maps. These slices were 

selected from the 1st, 17th and 28th frames among the 28 

frames generated to show the effect of the reconstruction 

procedure when the activity concentration in the lesion is 

lower, equal and higher than the background (liver).      

The whole generated frames were forward projected 

and reconstructed using in-house script connecting STIR 

functions needed. The projection data of frame 28 is shown 

in Figure 6. The reconstructed images of those shown in 

Figure 5 are displayed in Figure 7. Each frame contained 

47 slices. The quantitative analysis of the images 

reconstructed was performed via the calculation of the line 

profiles traced on a transverse slice of the images illustrated 

in Figure 5 & 7. Figure 8 illustrates the line profiles 

obtained.  

 

 
 
Figure 4-A. 18F-FDG Input function used in this study 
 

 
 
Figure 4-B. TAC's of ¹⁸F-FDG generated in different tissues 

 

 

 
Figure 5. Transverse, coronal and sagittal images of  ¹⁸F-FDG activity maps taken at 3 different time points corresponding to : i = frame 1, ii = 
frame 17 and iii = frame 28. The arrow shows the lesion inserted in the liver 
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Figure 6. A sinogram of the activity maps of frame 28 obtained during forward projection step using  Discovery PET/CT 710 scanner model. 

  

 
Figure 7. Transverse ,coronal and sagittal reconstructed 18F-FDG PET images taken at 3 different time points corresponding to i = frame 1, ii = 
frame 17 and iii = frame 28.  

 

 
 
Figure 8. Line profiles through a transverse slice of  4D-XCAT phantom before and after reconstruction: (a) frame 1, (b) frame 17, (c) frame 28 

 

 

Discussion 
 dPET remains limited to research since it 

suffers from several drawbacks such as high noise of the 
images and the long-time duration of data acquisition. 

Several attempts have been made to overcome these 
drawbacks using patient data. However, the 
unavailability of clinical data and the absence of gold 
standard slow down the development of this technique 
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for clinical uses. To overcome these limitations, we 
have proposed a new methodology to simulate realistic 
dynamic 18F-FDG PET images using realistic model of 
human body, 4D-XCAT phantom, combined with the 
three-compartment model, an actual acquisition protocol 
and simulated input function. 18F-FDG PET images 
obtained were reconstructed using STIR software. We 
have used in-house script developed to generate 
different tissues TAC’s, manipulate 4D-XCAT phantom 
and handle all STIR functionalities such as data forward 
protection, attenuation correction, noise adding to the 
sinograms and images reconstruction. The computation 
time was 8.76 min/frame. 

In Figure 4-B, the simulated TAC’s curves of the 
phantom tissues clearly show the tracer uptake and 
clearance, while the TAC of the tumor reveals a 
continuous tracer trapping. This behavior is correlated 

with the constant values k3 and k4  as it can be deduced 
from table 1. The TAC’s derived for the ventricles and 
the aorta are similar and evidently, reproduce the 
behavior of the input function since all the kinetic 
micro-parameters of these organs are equal to zero and 
the effective blood plasma volume is equal to one.  

In Figure 5, as expected, the activity is highest in the 
ventricles and the aorta as it can be seen in the images of 
frame 1. The lesion appears as a cold spot because at 
this step, the tumor has lower activity than the 
surrounding tissue. In the case of the image selected 
from frame 17, the lesion could not be recognized as the 
activity values in the tumor and in the liver are almost 
the same. The tumor can however, be accurately 
detected in the case of frame 28 where the 18F-FDG 
trapping is high and irreversible. 

From Figure 5 and Figure 7, the qualitative 
comparison shows that the images before and after the 
reconstruction were very similar. However, the lesion 
not clearly apparent in the frame 17 since the lesion and 
liver activity values were close, can be not seen in the 
corresponding reconstructed image. This is due to the 
technical limitations of the scanner model used in this 
study.  

In Figure 8, we can observe that the voxel intensities 
of the transverse images before and after reconstruction 
procedure are almost the same. The qualitative and 
quantitative comparison has demonstrated the efficiency 
of the reconstruction procedure followed in the present 
study. 

It is worth mentioning that dynamic 18F-FDG PET 
images simulation using 4D-XCAT phantom with 
kinetic modeling, and real patient clinical data differ in 
several ways. First of all, images from 4D-XCAT 
phantom and kinetic modeling simulations aim to 
replicate realistic human anatomy and physiology, but 
they are still computer-generated and may not fully 
capture the complexity of real patient data. Real patient 
data is obtained from actual patient scans and thus 
reflects the variability and diversity of real-world 
patients. Secondly, simulation methods can control the 
level and type of noise and artifacts present in the 
images, whereas real patient data may contain various 

types of noise and artifacts due to patient motion, 
scanner hardware, or other factors. The patient-specific 
characteristics such as age, body size, and co-
morbidities can significantly affect the results of PET 
imaging. Simulation methods may not fully replicate 
these characteristics and the associated variability that is 
present in real patient data. Finally, the experimental 
conditions for 4D-XCAT phantom and kinetic modeling 
simulation are controlled and standardized, whereas real 
patient data may vary in terms of the radiotracer dose, 
uptake time, and imaging parameters used. 

Despite these differences, 4D-XCAT phantom and 
kinetic modeling simulations can be useful for 
understanding the underlying physics and limitations of 
PET imaging and for developing and testing imaging 
algorithms and techniques. Real patient data, on the 
other hand, is essential for clinical decision-making and 
patient care, and provides a more comprehensive 
understanding of the disease process and the effects of 
treatment. 

Many studies were recently undertaken on the 
interest of dynamic 18F-FDG PET simulation and kinetic 
modeling such as that of Dimitrakopoulou-Strauss et al. 
[5]. This last study focused on the use of kinetic 
modeling and parametric imaging with dynamic PET for 
oncological applications, which is a broader topic than 
just lesion detectability investigation. Our work 
reinforces and supports the main findings of 
Dimitrakopoulou-Strauss et al. study and resolve some 
mentioned problems such as the problem of time-
consuming. Indeed, Dimitrakopoulou-Strauss et al. 
reported that kinetic modeling and parametric imaging 
can be used to improve lesion detectability in 
oncological PET imaging. Similarly, both the 4D-XCAT 
phantom and kinetic modeling approaches have been 
shown to be effective in detecting lesions in dynamic 
18F-FDG PET images. In terms of quantitative accuracy, 
Dimitrakopoulou-Strauss et al. emphasized the 
importance of quantitative accuracy in oncological PET 
imaging. The study by Dimitrakopoulou-Strauss et al. 
also discussed the computational complexity of kinetic 
modeling, which can be time-consuming and require 
significant computing resources. Similarly, the 4D-
XCAT phantom approach can be computationally 
intensive. 

The comparison between research works as our 
actual one on dynamic 18F-FDG PET images simulation 
using 4D-XCAT phantom and kinetic modeling for 
lesion detectability investigation is more focused on a 
specific application of some simulation and kinetics 
methods. However, all undertaken studies highlight the 
importance of quantitative accuracy and the 
computational complexity of these approaches. Indeed, 
different used methods have been shown to be effective 
in detecting lesions, with some studies reporting similar 
lesion detectability. However, there have been some 
reports of differences in lesion detectability depending 
on factors such as lesion size and location. 

The data generated through this work can be used to 
study the reduction of the total duration of data 
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acquisition in dPET while preserving the detectability of 
lesions by applying the multivariate image analysis 
techniques such as Principal Component Analysis 
(PCA). This could be investigated by extracting relevant 
images from the simulated dynamic imaging sequences 
that provide a lesion detectability level similar to the 
usual static images acquired at 35 mins post-injection. 
Full length and shorter dynamic sequences can be 
analyzed both qualitatively and quantitatively to 
demonstrate the potential of the proposed methodology.  
Other methods to reduce the total duration of dynamic 
PET imaging with 18F-FDG include sparse sampling 
schemes, multi-parametric image reconstruction, and 
deep learning-based techniques. However, these 
methods are still in the early stages of development and 
require further validation before they can be routinely 
used in clinical practice. 

Even though we have considered in this work only 
one lesion in the liver, the study could be easily 
extended to insert lesions with different shapes and 
concentrations in various organs. The effect of the 
respiratory motion on the reconstructed images will also 
be considered.      

 

Conclusion 
In this study, simulation of dynamic 18F-FDG PET 

images using 4D-XCAT phantom and kinetic modeling 
has shown promise in lesion detectability investigation 
and scan time reduction purposes. Lesion detectability 
investigation studies have shown that using 4D-XCAT 
phantom with kinetic modeling approach can be 
effective in detecting lesions in dynamic 18F-FDG PET 
images. Kinetic modeling with 4D-XCAT phantom 
simulations is found to be more accurate in estimating 
kinetic parameters and for lesion localization, things that 
are very important for quantitative analysis and 
treatment planning. The methodology proposed in this 
work is based on the combination between a 3-
compartment model, 4D-XCAT Digital Phantom, and 
STIR software. Thus, an in-house program was 
implemented in parallel pool on MATLAB environment 
to connect and handle all parts of the performed 
simulations and to facilitate the use of STIR functions. 

Regarding the scan time reduction, 4D-XCAT 
phantom with kinetic modeling simulation can be useful 
in identifying the optimal scan time and duration that 
can achieve high lesion detectability with a reduced scan 
time. This is particularly important in clinical settings 
where scan time is a limiting factor, such as in pediatric 
or claustrophobic patients. 

Overall, the use of 4D-XCAT phantom and kinetic 
modeling simulation in dynamic 18F-FDG PET imaging 
can aid in lesion detectability investigation and scan 
time reduction, thus providing better patient care and 
improving the efficiency of clinical PET imaging. 
However, it is important to note that simulation results 
should always be validated against real patient data 
before being applied in clinical practice. 
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