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Introduction: Several types of cancer can be detected early through thermography, which uses thermal 
profiles to image tissues in recent years, thermography has gained increasing attention due to its non-invasive 
and radiation-free nature. There is a growing need for thermographic images of breast cancer lesions in 
different nationalities and ages to develop this technique, however. This study aims to introduce a dataset of 
breast thermograms. 
Material and Methods: In this study, thermographic images of breast cancer from Iranian samples were 
prepared and confirmed due to the limited number of breast thermogram databases.  The prepared database 
was tested using artificial intelligence and another well-known DMR database (Database for Mastology 
Research) in this study to determine its reliability. 
Results: A variety of deep learning architectures and transfer learning are used to evaluate these databases 
for accuracy, sensitivity, speed, training compliance, and validation compliance. According to best-fitted 
structures for both types of databases, the database obtained from this study has a quality comparable to the 
DMR reference database, with minimum accuracy, sensitivity, specificity, precision, and F-score of 80%, 
86%, 86%, 88%, and 87%, respectively. 
Conclusion: Using thermography as a method of early breast screening is demonstrated to be effective. In 
comparison to DMR, the lower statistics of the proposed database (between 2 and 7 percent) indicates that 
more diverse breast thermograms should be captured in conjunction with improvements to imaging 
equipment as well as adherence to thermography recording protocols in order to improve the reliability and 
efficiency of the database. 
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Introduction 
Among women worldwide, breast cancer is the 

second most common and most deadly cancer, after 
lung cancer [1,2]. Early detection of breast cancer 
greatly improves patient survival [3,4]. Breast 
screening methods like Mammography have a high 
false-positive rate and can increase radiation-induced 
cancer risks [5-7]. Ultrasound is another method for 
breast screening, but its performance depends on the 
device and radiologist [8].  

     Living tissue has heat necessarily. Changes in 
surface temperature and blood circulation affect body 
temperature. It is possible to map quickly the 
distribution of heat throughout the body with infrared 
cameras.  Thermographic cameras differ in their 
spectral response, response time, and sensitivity. Each 
pixel in a thermal image is affected by both emitted 
and reflected radiation [9]. Micro bolometers provide 

basic thermal imaging technology [9]. There are two 
main types of thermal imaging cameras: thermal 
detectors and quantum detectors [10]. Most thermal 
detectors use uncooled micro-bolometers, which have 
lower sensitivity. The FLIR Lepton is a widely used 
long-wave infrared (LWIR) camera module designed 
for easy integration with standard mobile interfaces 
[9].  Infrared radiation from body tissues varies 
continuously, allowing for the measurement of heat 
distribution and changes. Thermography measures 
skin heat radiation, aiding in the diagnosis of vascular 
diseases and tumor types [8]. 

Early-stage cancer cells produce nitric oxide, 
leading to arterial dilation and increased blood flow, 
raising the temperature of affected tissue. Thus, deep 
breast lesions can also cause temperature changes on 
the skin surface [11]. Temperature changes are 
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gaining attention for breast cancer screening. Thus, 
thermographic imaging is an economical, non-
invasive, and painless method for early breast cancer 
detection, lacking ionizing radiation unlike other 
imaging techniques. Thermography offers less 
discomfort, no breast pressure, can identify 
precancerous areas, and is safe for young or dense 
breasts, as well as during lactation and pregnancy, 
increasing its popularity in breast cancer detection 
over the past decade [8]. 

Additionally, factors such as menstruation, stress, 
contraceptive use, pregnancy, and breastfeeding 
should be considered in final decisions regarding 
breast screening [12]. The quality of thermal images 
relies on room and patient conditions, necessitating a 
standard imaging protocol [6]. Articles [10,13] discuss 
patient preparation, imaging environments, and post-
processing of thermal images. 

Despite these advantages, thermography is not yet 
recognized as the standard breast screening method 
[5,14]. The main reason is that diagnosing lesions in 
thermographic images is often more challenging than 
with conventional imaging methods. Two main 
techniques have been proposed to diagnose cancerous 
lesions in breast thermography images. 

The first category extracts features from 
thermographic images for analysis. Some methods use 
morphological operators to detect subtle temperature 
changes in cancerous tissue versus background tissue. 
This technique relies on the normal heat distribution 
of healthy breast tissue, which shows slight variations 
from the background. Cancerous tissue temperature is 
higher than the background and correlates with 
malignancy grade and extent [15]. 

Other methods in this category utilize edge 
detection and gradient operators [16]. Techniques like 
Wiener filtering and histogram equalization enhance 
contrast, improving thermographic image 
interpretation. Furthermore, the estimation of tissue 
features by using a co-occurrence matrix [17], and 
attributes such as mean, standard deviation, entropy, 
skewness, and kurtosis have been examined in this 
family of techniques [18]. Other extracted features in 
this category include entropy, dual entropy, 
histogram-based features, and central computing-
based features like center of gravity and geometric 
center [16].  

The second category focuses on classification 
methods, with fuzzy approaches extensively examined 
for analyzing breast thermographic data. In [17], 
thermography images were used to detect breast 
cancer using statistical features of both breasts and a 
fuzzy classifier. Additionally, classifiers like simple 
Bayesian, support vector machines, hill-climbing 
algorithms, and decision trees are commonly used in 
this category [18]. Neural networks have also proven 
effective for classification in this category. Research 
[19] proposes a system that classifies breast 
thermographic images as normal or abnormal using a 

multilayer neural network with eight statistical 
features. 

Classification methods primarily require effective 
feature extraction from thermograms. Moreover, 
manual feature extraction is difficult, time-consuming, 
and requires expertise.  Thus, the results of computer-
aided detection using these classifiers heavily depend 
on the feature extraction stage. In recent years, deep 
learning has emerged as an effective technique for 
classifying complex data. Deep learning offers several 
advantages, including direct feature extraction from 
training data, reduced complexity in feature selection, 
and the ability to perform feature extraction, selection, 
and classification within the same architecture [20]. 
Convolutional Neural Networks (CNNs) are the most 
common deep learning algorithms for medical image 
analysis [21]. 

Article [22] suggests combining thermography and 
deep learning to improve early breast cancer 
detection. The authors of [23] propose a CAD method 
to classify patients as cancer, no cancer, or non-
cancerous. In article [24], the authors present an 
automatic method for extracting the breast area and 
classifying thermograms as normal or abnormal using 
deep learning. The authors of [25] propose a novel 
method for early breast cancer detection by 
combining thermal images with personal and clinical 
data. The authors of [26] propose a mobile self-
screening framework for early breast cancer detection 
based on temperature characteristics. 

Training CNNs requires a large amount of labeled 
data, which is complex and costly to collect in medical 
applications. This challenge can be addressed using 
transfer learning from pre-trained CNN networks 
[21], applying knowledge from large datasets to 
similar problems. 

According to [27], transfer learning is followed by 
fine-tuning to save computational resources and data 
augmentation to tackle data scarcity. In article [28], 
the pre-trained DenseNet121 model serves as a 
feature extractor for the classifier. The authors use 
Prewitt and Roberts edge detectors on thermal breast 
images prior to feature extraction. The authors of [29] 
use three CNNs with transfer learning to classify 
thermography images as sick or healthy. The authors 
of [30] fine-tuned CNN models for breast cancer 
detection using ResNet101, MobileNetV2, and 
ShuffleNetV2. 

Deep neural networks exhibit high predictive 
accuracy in breast cancer radiology due to their 
robustness and scalability [31]. Deep learning models 
like CNNs can classify thermograms from 
thermography as normal or abnormal, akin to 
frameworks in studies [5,7]. A key limitation of deep 
learning for breast thermograms is the need for a 
large dataset. This issue is rarely addressed in studies, 
emphasizing the need for a new national database for 
thermography breast cancer analysis. To address this 
issue, this study introduces a database of breast 
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thermograms from Iranian women. According to this 
study, accuracy, sensitivity, specificity, precision, and 
F-score had to be at least 80%, 86%, 86%, 88%, and 
87% respectively. Pre-trained deep learning 
architectures were validated using the introduced and 
a reference database, assessing accuracy, sensitivity, 
speed, and training compliance. 

 

Materials and Methods 
Data 

Two datasets of thermographic images were used, 
with the first sourced from the DMR-IR database [32]. 
The dataset contains infrared (IR) images and clinical 
data, including healthy and sick individuals, using 640 x 
480 pixel IR images [33]. IR images in DMR are 
captured using FLIR (Forward Looking Infrared) SC620 
thermal cameras, with a sensitivity of less than 0.04 °C 
and a temperature range of 40 to 500 °C. This database 
offers IR imaging from five views: frontal, left 45°, left 
90°, right 45°, and right 90°, using static and dynamic 
protocols [33]. Figure 1 displays some breast 
thermograms from the DMR-IR database.  

The second dataset, the Jihad database, was obtained 
from a collaboration between Research Organization for 
Sciences and Technology (IROST) and the Motamed 
Cancer Institute, (MCI). Figure 2 shows some breast 
thermograms in Jihad database.  Over two years, 407 
volunteers provided thermograms for this dataset 
through a static protocol, created under ethics approval 
IR.ACECR.IBCRC.REC.1398.009. The imaging device 
was a VisIR 640 thermal camera from Thermoteknix 
Systems Ltd. The dimensions of the thermograms in 
Jihad database are 1008 by 528. The Jihad database 
includes ultrasound imaging alongside thermography, as 
well as ultrasound, mammography, and pathology 
reports. To label the data, breast processes in the 
pathology reports must be identified and their status 
determined. A breast process is classified into four 
categories: normal, benign, high-risk benign, and 
malignant. In Table 1, the two databases are compared 
in detail. The Thermoteknix VisIR 640 camera has a 
resolution of 480x640, a spectral range of 7.5 to 13 µm, 
and can detect temperatures from -20 to 350 °C. 

 

      a)                                                                        b) 
Figure 1. Examples of DMR-IR database. a. Healthy thermogram b. Sick thermogram 

 

 
                                            a)                                                                b)                                                                 c) 
Figure 2. Examples of Jihad database a. The left breast is benign and the right breast is normal b. The left breast is normal and the right breast is 
malignant c. The both of breast are benign 
 
Table 1. Details of available images for each database 
 

 DMR-IR Jihad 

The number of patients 296 407 

Age range 25 - 123 14 - 75 

The period for taking images 2007-2020 2017-2019 

The number of smoker 13 30 

The number of patient with history of surgery 27 24 

The number of patient with history of biopsy 111 62 

The number of patient with history of radiography 44 13 

The number of patient with family history 13 160 

The number of patient with products at breasts or armpits region 65 110 

The number of patients with a history of alcohol consumption 0 10 
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The proposed method 
This study explores various deep learning methods 

for analyzing thermographic images of breast cancer. To 
this end, convolutional neural network-based methods 
are employed. This section first examines the function 
of convolutional neural networks, followed by an 
exploration of the capabilities of transfer learning 
modified versions of this architecture. 

 

Convolutional neural network 
Deep learning, a subset of machine learning and AI, 

uses a hierarchical structure for feature extraction from 
raw input data, unlike classical neural networks. 
Convolutional neural networks are essential for image 
analysis, including face, text, human body, and 
biological image identification. Figure 3 shows that this 
structure consists of convolutional, pooling, and fully 
connected layers [34]. In this architecture, the 
convolution layer is the first applied to the input image, 
where various filters slide over it as mathematical 
kernels, extracting unique features from the raw image. 

As shown in figure 3, the result of the internal 
multiplication of the input image and the filter, along 
with the application of the activation function, forms the 
pooling layer [35]. In the next step, the pooling layer 
performs nonlinear sampling of features, reducing 
computational complexity by minimizing dimensions 
and dividing the input into smaller parts. Depending on 
the reduction type, the average, median, or maximum of 
each part is replaced by an index value [36]. Finally, the 
fully connected layer, functioning as a conventional 
perceptron, classifies features extracted from previous 
layers, with each input node connected and weighted. 
The output is the sum of the products of inputs and their 
weights, with a threshold set by the activation function, 
which may be a simple or multilayer perceptron or other 
classifiers [19].  

 

Transfer learning 
The structure of deep neural networks, including the 

convolutional network described earlier, consists of 
various parameters, and effective learning requires 
proper parameter setting. Optimal performance is 
achieved by deep learning models trained on large 
volumes of annotated data [37]. Large datasets are 
essential for optimal network performance, but often 
hard to obtain in applications like medical image 
processing, necessitating the use of trained networks. 

This limitation can be addressed through transfer 
learning, an effective and useful method.  Transfer 
learning enables a model for a similar application to 
initialize its weights from a pre-trained model, 
potentially improving performance [38]. Thus, the 
learning process does not start from scratch, as the 
convolution layer weights are frozen while the fully 
connected layer is updated based on the database [29]. 
Key benefits of transfer learning include improved 
classification accuracy and faster training processes 
[39]. 

 

 
Figure 3. Description of the basic structure of the convolutional neural 
network 

 
Transfer learning can be implemented in two main 

ways: as a feature extractor, which freezes the 
convolutional layers, or through fine-tuning, which 
updates the model parameters during training [40]. The 
present study employs a feature extractor approach, 
utilizing well-known pre-trained networks such as 
VGG16, VGG19, ResNet50, and InceptionV3. These 
models were trained on the ImageNet database, which 
includes over 14 million images across 1,000 classes 
[40]. Tables 2, 3, and 4 show the details of the 
architectures used in this study. Models VGG16 and 
VGG19 belong to the VGG (Visual Geometry Group) 
family. A major disadvantage of VGG is its large 
number of parameters that need to be trained [39]. The 
Inception V3 with was developed by the Google 
research team. By factoring large convolution layers 
into smaller ones, this network reduces the number of 
parameters [40]. The ResNet50 model prevents 
overfitting by using identity mapping, allowing the 
model to bypass unnecessary CNN weight layers [41].

 
Table 2. The detail of the trainable layers 
 

Network Internal structure Number of parameters Input size 

VGG16(Visual Geometry Group) 5 convolution layers, and 3 max pooling layers 138 million 244 × 244 

VGG19(Visual Geometry Group) 5 convolution layers, and 3 max pooling layers 138 million 244 × 244 

Xception 8 MBconv block, and 1 convolution block 23 million 299 × 299 

ResNet50 5 convolution layers 23 million 244 × 244 

InceptinV3 4 convolution layers 25 million 299 × 299 

MobileNet 6 convolution layers 13 million 244 × 244 

DenseNet121 3 convolution layers 7,628,484 244 × 244 

EfficientNetB0 4 convolution layers 11 million 244 × 244 
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Table 3. The detail of the used parameters 
 

Optimizer Batch size Activation function Loss function 

Adam 32 ReLu Binary_Crossentropy 

 
Table 4. The detail of the non-pre-trained CNN (Convolution Neural Network) 
 

Number of layers 6  

Convolution 1 [2-D conv(3x3), 16,  
2-D   conv (3x3), 16] 

 

Convolution 2 2-D conv (3x3), 32  
2-D conv (3x3),   32] 

 

Convolution 3 2-D conv (3x3), 64  
2-D conv (3x3), 64] 

 

Activation function ReLu  

 

 
To comprehensively test the capability of deep 

neural networks in thermographic image modeling, this 
study uses nine models, starting with a CNN without 
training. For the other models, transfer learning neural 
networks from the Keras library are applied, including 
VGG16, VGG19, Xception, ResNet50, InceptionV3, 
MobileNet, DenseNet121, and EfficientNetB3. 

The proposed algorithm was applied to the 
mentioned databases through random selection of 
patients, forming three sets: training, validation, and 
test. In both scenarios, 60% of the data is allocated for 
training, 20% for validation, and 20% for testing. In the 
Jihad dataset, normal patients are classified as healthy, 
while benign high-risk patients and malignant patients 
are considered sick. In the DMR-IR dataset, 
thermograms are labeled as healthy or sick, so benign 
thermograms are excluded in the second scenario. 
Additionally, due to the higher number of healthy 
individuals in both databases, the images of this group 
were reduced to match the number of the sick group, 
and unlabeled thermograms were subsequently removed 
for better neural network performance. 

As mentioned earlier, in the Jihad database, right and 
left breast thermographic images were separated, and 
network training or testing was conducted using images 
from the same breast. This separation is important 
because one breast may be healthy while the other is 
sick. In the DMR-IR database, however, it is not 
specified which breast is healthy or sick. Thus, each 
thermogram of a sick individual was labeled as sick, 
while each healthy individual was labeled as healthy. 

Figure 4 displays the different thermograms in the 
DMR-IR and Jihad databases. In the Jihad database, as 
shown, the right and left breasts in each image are 
cropped and labeled as healthy or diseased based on 
available pathology reports before entering the neural 
network. 

Given these issues and the use of two distinct 
thermographic databases, the study was conducted in 
two separate scenarios. This approach not only evaluates 
the efficiency of deep learning methods across these 
databases but also justifies the differences in results 
based on the variations between the databases. 

 

Figure 4. Example of thermograms:  Left: Collection of thermograms 

of jihad database separately for each beast and according to available 

pathology reports. Right: Collection of DMR-IR database 

thermograms by each patient according to available pathology report 

 

Statistical analysis 
Following the completion of testing, various 

potential outcomes may arise when validating the 
results. One scenario is when the deep learning model 
correctly identifies an individual as sick, known as a 
true positive. Misdiagnoses are termed false positives. 
Conversely, correct identifications of healthy 
individuals are called true negatives, while incorrect 
identifications of healthy individuals are referred to as 
false negatives. Thus, the sensitivity parameter 
represents the percentage of correctly diagnosed sick 
individuals from the total actual patients in equation 1 
[39]. 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                    (1) 

 
In equation 2, the specificity parameter indicates the 

percentage of true healthy individuals among total 
healthy samples, reflecting the classifier's ability to 
identify genuine healthy cases [39]. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                    (2) 
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In equation 3, the accuracy parameter represents the 
ratio of correct diagnoses (both healthy and sick) by the 
classifier to the total samples, reflecting the classifier's 
overall diagnostic capability [39]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    

(3) 
Positive cases correctly identified are measured by 

the precision parameter, which indicates the percentage 
of individuals known to be sick who are accurately 
diagnosed as such. This value is derived from equation 4 
[39]. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                       (4) 

    
The F-score, obtained from equation 5, represents 

the sensitivity and precision by balancing them through 

harmonic means to mitigate the influence of extreme 
values [33]. 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                     (5) 

 

 

Results 
Table 5 and Table 6 show the number of thermograms 

used in each database. The difference between the number 

of available and used images was due to the lack of biopsy, 

low quality, and wrong angle of capture in different groups 

of images. 

The first scenario involved an examination of the 

DMR. Table 7 shows the results of the above comparisons. 

In the second scenario, the Iranian Jihad database was 

examined. Table 8 shows the results of the above 

comparisons. 
 

Table 5. The number of used thermograms in DMR-IR (Database for Mastology Research) database 
 

 Training validation Test 

Healthy 33 11 11 

Sick 26 9 9 

 

Table 6. The number of used thermograms in Jihad database 

 

 training validation Test 

Healthy 90 30 30 

Sick  50 16 18 

 

Table 7. Results of the DMR-IR (Database for Mastology Research) database 

 

Model Accuracy (%) sensitivity (%) Specificity (%) precision (%) F-score (%) 

CNN 63.15 37.5 81.81 60.00 46.15 

VGG16(Visual 

Geometry Group) 

73.68 50.00 90.90 80.00 61.53 

VGG19(Visual 

Geometry Group) 

73.68 62.50 81.81 71.42 66.66 

Xception 89.47 87.50 90.90 87.50 87.50 

ResNet50 42.10 37.50 45.45 33.34 35.29 

Inception 57.89 37.50 72.73 50.00 42.85 

MobileNet 73.68 62.50 81.81 71.42 66.66 

DenseNet121 84.21 75.00 90.90 85.71 80.00 

EfficientNet 67.30 61.53 73.07 62.03 61.77 

 

Table 8. Results of the Jihad database 

 

Model Accuracy (%) sensitivity (%) Specificity (%) precision (%) F-score (%) 

CNN 71.73 78.26 65.21 79.04 78.65 

VGG16(Visual 

Geometry Group) 

78.26 86.95 69.56 88.12 87.53 

VGG19(Visual 

Geometry Group) 

80.43 78.26 82.60 79.05 78.65 

Xception 76.08 78.26 73.91 78.53 78.40 

ResNet50 67.39 73.91 60.86 74.66 74.28 

Inception 63.04 65.21 60.86 66.27 65.73 

MobileNet 78.26 69.56 86.95 69.59 70.05 

DenseNet121 67.39 73.91 60.86 75.06 74.48 

EfficientNet 58.69 52.17 65.21 54.78 62.92 
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Discussion 
Breast thermography data were analyzed across two 

separate databases using nine deep architectures, with 
biopsy results serving as the standard reference for 
diagnostic validation in both scenarios. To evaluate and 
compare the results of both scenarios, the parameters of 
accuracy, sensitivity, specificity, precision, and F-score 
were utilized. In calculating the mentioned parameters, 
the biopsy result was used as a reference due to its 
greater reliability compared to results from other 
modalities, such as mammography or sonography. 

Data processing based on deep learning paradigm 
were performed on the TensorFlow platform (version 
2.10.0) by using the Tensor Processor Unit hardware 
developed by Google Colab. Computers with a Core I7-
7700 processor and 16 GB of RAM, and a 2 GB 
graphics card (NVIDIA GeForce GT 710) were used in 
order to performing simultaneous calculations. 

In the first scenario, the DMR-IR database was 
analyzed, with training and testing of deep models 
conducted exclusively using data obtained from the 
frontal view. This strategy was implemented because the 
second database (Jihad) contains only images taken 
from the same view, allowing for a more meaningful 
comparison between the results of the two databases. 
High sensitivity and minimal false-negative errors are 
crucial in medical decision-making. 

Results reveal the CNN-based model without 
transfer learning is significantly weak, as the available 
thermographic data is insufficient for effective training. 
Since access to a large amount of thermographic data is 
often unlikely, employing transfer learning methods is 
essential to avoid overfitting or under-fitting the model. 
Another result supports the use of deep learning and 
thermographic data for breast cancer diagnosis, as 
confirmed by several evaluated models. Table 7 shows 
that the Xception method achieved higher quality for the 
test database, with an accuracy approximately 5% better 
than its nearest competitor, DenseNet121. Its sensitivity 
is about 12% higher than DenseNet121, the following 
best sensitivity. This model matches or exceeds all 
reported methods in specificity; however, the current 
results only indicate its potential for cancer diagnosis. 
For instance, Table 7 shows that the recent model's 
87.5% sensitivity indicates that over 12% of breast 
cancer cases may go undetected, highlighting the need 
for further research to enhance performance. Similarly, 
achieving 90.90% for the specificity parameter indicates 
the diagnosis of the disease for about 10% of healthy 
people, which is not as challenging as the previous case 
but indicates the need to use more images or more 
complex networks. In addition, Table 9 shows the 

comparison of the results obtained in this scenario with 
several studies that have used this database. 

In the second scenario, the Iranian Jihad database 
was analyzed, using only frontal data for training and 
testing, as in the first scenario. Table 8 shows the results 
of the above comparisons. The interpretation of results 
using these parameters indicates that the CNN-based 
model without transfer learning performs poorly. It is 
evident that no method is definitively superior for the 
database in question. Therefore, the accuracy of the 
VGG19 architecture was about 2% better than that of its 
closest competitors. However, regarding specificity and 
sensitivity, this method did not perform the best. 
MobileNet and VGG16 outperformed it, with VGG16 
showing an 8% higher sensitivity than its closest 
alternative, while MobileNet had a 4% advantage in 
specificity over its nearest competitor. 

The results from both scenarios indicate that the 
deep learning framework has the potential to effectively 
distinguish between healthy and cancerous 
thermographic images. Achieving 90%, 87%, 89%, 
87%, and 87% for specificity, sensitivity, accuracy, 
precision, and F-score, respectively, indicates that the 
DMR-IR data effectively aids in diagnosing healthy and 
sick individuals. However, the sensitivity parameter in 
this database reveals a 15% error in identifying sick 
patients as healthy, indicating the need for a larger 
database and potentially more complex deep network. 
The Jihad database in the best structure obtained 86%, 
86%, 80%, 88% and 87% values for the five parameters 
of specificity, sensitivity, accuracy, precision and F-
score respectively. The values of the criteria are 
significantly weaker—by 2 to 7%—compared to those 
in the DMR-IR data. Nonetheless, a consistent trend in 
the parameter values from DMR-IR testing is evident in 
the Jihad database, indicating that the deep learning 
framework for modeling and analyzing this data also 
possesses the necessary potential. The lower results 
related to the Jihad database compared to DMR-IR can 
be attributed to two main factors: first, the Jihad 
database has fewer patients, and second, it contains 
more images of lower quality and higher noise. The 
limited number of images likely contributes 
significantly to the reduced performance observed in 
this dataset. Another noteworthy point is that the models 
yielding the best results in the two tested scenarios were 
not necessarily the same or similar; for instance, the 
Xception deep model stood out in this regard. While it 
achieved the best results among competitors for the 
DMR-IR data, the same model performed weaker than 
its alternatives in the Jihad database. 

 
Table 9. Comparison of the results obtained with several studies 
 

Model Accuracy (%) sensitivity (%) Specificity (%) precision (%) F-score (%) 

ours 89.47 87.50 90.90 87.50 87.50 

[42] 80.00 83.33 77.77 71.43 76.89 

[43] 73.10 92.00 53.00 - - 

[44] 88.89 - - - - 
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Conversely, the VGG19 model yielded the best 
results for the Jihad database, while its performance on 
the DMR-IR database was relatively poor. This 
difference can be attributed to the insufficient number of 
training images, which may lead each examined 
network structure to acquire optimal weights for specific 
information only after transfer learning from pre-trained 
networks. These pre-trained networks may deliver better 
results for specific tasks based on their training data, 
data structure, and network architecture. For example, 
the VGG16 model outperforms the VGG19 model by a 
few hundredths of a percent on ImageNet data, despite 
VGG19 having a more complex structure with more 
layers than VGG16. These results indicate that 
achieving an optimal deep model for distinguishing 
healthy and cancerous thermographic images depends 
on the type and characteristics of the image data, rather 
than adhering to a single architecture. A similar 
limitation has been observed in other applications of 
deep learning [18]. In applying this research, two crucial 
factors emerge: first, the non-uniqueness of deep 
architectures, and second, the type of images used for 
network pre-training in transfer learning, specifically 
their compatibility with breast thermography images. 

Learning curves for these models in both scenarios 
are shown in figure 5 and 6. The diagram for each 
model expresses the training process performed in that 
model for DMR-IR and the Jihad data simultaneously. 
As can be seen, the superiority of the first database, 
argued in the previous lines, has been significantly 
illustrated in these figures. 

Given the random nature of deep neural network 
parameters, particularly at the start of training, 
measuring the variance in the output of these networks 
is a crucial factor in assessing model performance. 
Calculating this parameter from 30 runs for the 
networks are shown in figure 7 and 8. Thus, Figure 7 
reports the values of these scatterings for the models 
trained in the first scenario, and figure 8 reports the 
values in the second scenario. 

Figure 7 shows that in the case of the DMR-IR 
database, the VGG16 and DenseNet121 models had the 
least scattering, indicating that in these cases, the 
relevant neural network performed a more concentrated 
result in most tests. Based on this, as it turns out, the 
DenseNet121 architecture, which was the best case in 
figure 8, also performed well in most applications. 

Figure 8 shows that the ResNet50, EfficientNetB3, 
and DenseNet121 models in the Jihad database had the 
lowest scattering rates after CNN. It should be noted 
that in the non-transfer learning CNN method, all the 
results have been poor and the different executions have 
not resulted in very different results. This underscores 
the fact that multiple applications of this method on 
small data do not lead to practical training. 

Alongside accuracy parameters for learning and 
testing, execution speed is a vital criterion for evaluating 
various processing methods, primarily due to the bulk 
and inherent slowness of deep learning techniques. This 
factor is doubly critical in studies such as this research. 

Based on this, the time taken to train the nine mentioned 
models on the same hardware system reflects the 
duration required for each model's training. Based on 
the values in figure 9, it can be concluded that the 
MobileNet neural network is approximately 1 second 
faster than its nearest competitor, the CNN without 
transfer learning. However, if we exclude this model 
from the comparison, the CNN without transfer learning 
has provided unacceptable results, as noted earlier in the 
section. In that case, the MobileNet deep model 
completes the training process about 8 seconds faster 
than the next alternative, VGG16. Considering that this 
model is more straightforward than other neural 
networks, its higher speed may be explained. This 
aspect of its performance can be attributed to the simpler 
architecture of this network than the other mentioned 
neural networks. Similarly, for the EfficientNetB3 and 
ResNet50, due to their different architectures the fact 
that they need more time to train may be explained. An 
important point is the required time to train the networks 
with the best performance in both databases in this 
study. It can be seen that the Densnet121 models 
(optimal method for DMR-IR data) and VGG19, 
VGG16, and MobileNet models (superior method for 
jihad data) had good performance due to the average 
speed. 

Another important measure in evaluating the 
performance of neural networks used in this study is the 
study of learning curve behavior for both used 
databases. Figure 5 and 6 show the training and 
validation curves for both DMR-IR and Jihad databases, 
respectively. The curves for the first database indicate 
that in the DMR-IR, the validation curve in all tested 
networks had both a decreasing trend. This phenomenon 
indicates the absence of problems such as overfitting. 
Although the above trend may be observed in all used 
architectures, in particular, the DenseNet121 neural 
network has been learning from the network parameters 
until the last execution of the program, and it is 
completely aligned with the best results obtained by this 
network. In the learning diagrams of other models, 
including ResNet50, Inception V3, Xception, VGG16, 
and EfficientNetB5, although the network learning 
curves are relatively similar to DenseNet121, in the 
validation process, these neural networks, especially in 
the last epoch, have not been able to achieve the 
alignment in the DenseNet121 diagrams. This is more 
evident in the case of the comparing the DenseNet121 
learning and validation curves with other models from 
epoch 15 onwards. Based on learning and validation 
curves, most of the tested models showed a decreasing 
trend in Jihad database. However, by examining the 
curves reported in figure 6, it is clear that the VGG19 
neural network has the best performance in validating 
and learning. This is more evident in comparing the 
VGG19 training and validation curves with other 
structures from epoch 15 onwards. This issue is aligned 
with the best results obtained by this network in the test 
scenario with the jihad database described in the 
previous sections. As can be seen in the learning 
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diagrams of other architectures in figure 6, such as 
VGG16, ResNet50, Xception, InceptionV3, and 
EfficinetNetB5, these networks did not perform better in 
the validation process than VGG19. It is especially true 
in cases like CNN with poor results from the earlier 
discussed architectures. 

 

Conclusion 
In this research, a new database of breast cancer 

thermograms in Iran has been prepared and is being 
validated. In addition, nine well-known deep 
architectures such as Xception have been used to 
evaluate the proposed database.  

 
 

 
  

  

 

   
  
 
Figure 5. DMR-IR database training diagrams 
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Figure 6. Jihad database training diagrams 

 

 
Besides the proposed database, the DMR-IR 

database has also been used to achieve a plenary result. 
Obtaining 90%, 87%, 89%, 87% and 87% for 
specificity, sensitivity, accuracy, precision and F-score 
parameters for DMR-IR data, respectively, showed the 
considerable potential of deep learning methods in 
interpreting this data. Meanwhile, the results obtained 
from the Iranian database also obtained values of 86%, 
86%, 80%, 88% and 87% for the above five parameters, 
respectively.  Based on the results of the study, artificial 
intelligence and deep learning may be applied as a 
confirmation method to introduce thermography as a 
confirmatory breast cancer diagnosis method. The study 
will be further investigated by taking more images, 
using a more suitable thermal imaging device, and 
providing better temperature conditions during the 
imaging process. 

 
Figure 7. The variance of DMR-IR database 
 

 
Figure 8. The variance of Jihad database 
 

Figure 9. Duration of training (vertical axis is the name of the method 
- the horizontal axis is seconds) 
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