Evaluation of 3D-CRT Radiotherapy Treatment Planning with Radiobiological Effects in Patient-Specific 3D Printed Anthropomorphic Phantom Postmastectomy Breast Cancer Axillary Metastases

Document Type : Original Paper

Authors

1 Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS - Sukolilo Surabaya 60111, East Java, Indonesia.

2 Medical Physicist of Radiotherapy Installation, Naval Hospital Dr. Ramelan, Surabaya 60244, East Java, Indonesia

10.22038/ijmp.2024.73930.2309

Abstract

Introduction: The aim of this study was to evaluate and measure the effectiveness of a particular radiotherapy treatment planning system, namely 3D conformal radiation therapy (3D-CRT), and radiobiological effects in postmastectomy breast cancer axillary lymph metastases using a patient-specific 3D printed anthropomorphic phantom of the right breast after surgery.
Material and Methods: The chest wall and axilla were the two treatment targets for 3D-CRT planning techniques. Each target was subjected to variations of two and three irradiation fields, with a dose of 50.00 Gy and fractionation of 2.00 Gy. From the variations, the radiation dose received by planning target volume (PTV) chest wall, PTV-Axillary, and organs at risk (OARs) was evaluated to determine the best planning technique through dosimetry verification. The thermoluminescent dosimeter (TLD) 100 Chip and EBT3 film were employed to measure the radiation dose at the PTV and OARs.
Results: The planning system evaluation based on dose volume histogram showed no significant difference (p = 0.993) between two and three irradiation fields in both the chest wall and axillary planning 3D-CRT technique. Normal tissue complication probability for OARs has values below 5%, while the smallest value was obtained for the left lung. Finally, the point dose verification between planning and measurement using TLD100 and EBT3 film indicated an average difference of 9.14% and 4.34%, respectively, with no significant difference.
Conclusion: This study successfully demonstrated the dosimetry evaluation and radiobiological effects of postmastectomy right breast cancer treatment using a patient-specific 3D printed anthropomorphic phantom, which met the established standards.

Keywords

Main Subjects


  1. The Global Cancer Observatory. World Factsheet of Cancer Today: Breast Cancer Incident and Mortality in the World. International Agency for Research on Cancer 2022.https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf .
  2. Chakrabarty S, Sharma S, Maji A, Biswas L, Mandal S. Prospective study to compare the dose distribution and acute toxicity of three-dimentional conformal radiation therapy with intensity-modulated radiation therapy for post-mastectomy radiotherapy in carcinoma breast. J Med Sci Res. 2022;10(3):133–
  3. Emami B, Lyman J, Brown A, Cola L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. International Journal of Radiation Oncology* Biology* Physics. 1991 May 15;21(1):109-22.
  4. Sprung CN, Chao M, Leong T, McKay MJ. Chromosomal radiosensitivity in two cell lineages derived from clinically radiosensitive cancer patients. Clinical cancer research. 2005 Sep 1;11(17):6352-8.
  5. Xie X, Ouyang S, Wang H, Yang W, Jin H, Hu B, et al. Dosimetric comparison of left-sided whole breast irradiation with 3D-CRT, IP-IMRT and hybrid IMRT. Oncology reports. 2014 May 1;31(5):2195-205.
  6. Lobo D, Challapalli S, Banerjee S, Putha SK, Saxena PP, Holla R, et al. Fabrication and development of a thorax phantom to evaluate 3D CRT treatment planning techniques for post-mastectomy chest wall radiotherapy. Physical and Engineering Sciences in Medicine. 2021 Jun;44:425-32.
  7. Prior PW, Sparks I, Wilson JF, Li XA, White JR. Use of three dimensional conformal radiation therapy (3DCRT) for node positive breast cancer does not result in excess lung and heart irradiation. International Journal of Radiation Oncology, Biology, Physics. 2011 Oct 1;81(2):S805.
  8. Pierce LJ, Butler JB, Martel MK, Normolle DP, Koelling T, Marsh RB, et al. Postmastectomy radiotherapy of the chest wall: dosimetric comparison of common techniques. International Journal of Radiation Oncology* Biology* Physics. 2002 Apr 1;52(5):1220-30.
  9. White DR. The design and manufacture of anthropomorphic phantoms. Radiation Protection Dosimetry. 1993 Sep 1;49(1-3):359-69.
  10. Winslow JF, Hyer DE, Fisher RF, Tien CJ, Hintenlang DE. Construction of anthropomorphic phantoms for use in dosimetry studies. Journal of Applied Clinical Medical Physics. 2009 Jun;10(3):195-204.
  11. Choi Y, Lee IJ, Park K, Park KR, Cho Y, Kim JW, et al. Patient-specific quality assurance using a 3D-printed chest phantom for intraoperative radiotherapy in breast cancer. Frontiers in Oncology. 2021 Mar 15;11:629927.
  12. Butson MJ, Elferink R, Cheung T, Peter KN, Stokes M, Quach KY, et al. Verification of lung dose in an anthropomorphic phantom calculated by the collapsed cone convolution method. Physics in Medicine & Biology. 2000 Nov 1;45(11):N143.
  13. Abdemanafi M, Tavakoli MB, Akhavan A, Abedi I. Evaluation of the lung dose in three-dimensional conformal radiation therapy of left-sided breast cancer: A phantom study. Journal of Medical Signals & Sensors. 2020 Jan 1;10(1):48-52.
  14. Endarko and A. P. Hariyanto. 3D Fantom Antropomorfik Untuk Jaminan Kualitas Radioterapi Pada Kasus Kanker Payudara Pasca-Mastektomi. Patent Indonesia 2021;P00202102195.
  15. Hodapp N. The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft...[et al]. 2012 Jan;188(1):97-9.
  16. Feuvret L, Noël G, Mazeron JJ, Bey P. Conformity index: a review. International Journal of Radiation Oncology* Biology* Physics. 2006 Feb 1;64(2):333-42.
  17. Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, Ten Haken RK, Yorke ED. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. International Journal of Radiation Oncology* Biology* Physics. 2010 Mar 1;76(3):S3-9.
  18. Chang JH, Gehrke C, Prabhakar R, Gill S, Wada M, Joon DL, Khoo V. RADBIOMOD: a simple program for utilising biological modelling in radiotherapy plan evaluation. Physica Medica. 2016 Jan 1;32(1):248-54.
  19. Liuzzi R, Piccolo C, D’Avino V, Clemente S, Oliviero C, Cella L, et al. Dose–response of TLD-100 in the dose range useful for hypofractionated radiotherapy. Dose-Response. 2020 Feb 11;18(1):1559325819894081.
  20. Sipilä P, Ojala J, Kaijaluoto S, Jokelainen I, Kosunen A. Gafchromic EBT3 film dosimetry in electron beams—energy dependence and improved film read‐out. Journal of applied clinical medical physics. 2016 Jan;17(1):360-73.
  21. Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Medical physics. 2009 Nov;36(11):5359-73.
  22. Ataei G, Rezaei M, Gorji KE, Banaei A, Goushbolagh NA, Farhood B, et al. Evaluation of dose rate and photon energy dependence of gafchromic EBT3 film irradiating with 6 MV and Co-60 photon beams. Journal of Medical Signals & Sensors. 2019 Jul 1;9(3):204-10.
  23. Borca VC, Pasquino M, Russo G, Grosso P, Cante D, Sciacero P, et al. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. Journal of applied clinical medical physics. 2013 Mar;14(2):158-71.
  24. Bahreyni Toossi MT, Gholamhosseinian H, Vejdani Noghreiyan A. Assessment of the Effects of Radiation Type and Energy on the Calibration of TLD-100. Iranian Journal of Medical Physics. 2018 Jul 1;15(3):140-5.
  25. Callens M, Crijns W, Simons V, De Wolf I, Depuydt T, Maes F, Haustermans K, D'hooge J, D'Agostino E, Wevers M, Pfeiffer H. A spectroscopic study of the chromatic properties of GafChromic™ EBT3 films. Medical physics. 2016 Mar;43(3):1156-66.
  26. Niroomand‐Rad A, Chiu‐Tsao ST, Grams MP, Lewis DF, Soares CG, Van Battum LJ, et al. Report of AAPM task group 235 radiochromic film dosimetry: an update to TG‐55. Medical physics. 2020 Dec;47(12):5986-6025.
  27. Khachonkham S, Dreindl R, Heilemann G, Lechner W, Fuchs H, Palmans H, et al. Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams. Physics in Medicine & Biology. 2018 Mar 15;63(6):065007.
  28. Aras S, İkizceli T, Aktan M. Dosimetric comparison of three-dimensional conformal radiotherapy (3D-CRT) and intensity modulated radiotherapy techniques (IMRT) with radiotherapy dose simulations for left-sided mastectomy patients. European journal of breast health. 2019 Apr;15(2):85.
  29. Xie Y, Bourgeois D, Guo B, Zhang R. Postmastectomy radiotherapy for left-sided breast cancer patients: Comparison of advanced techniques. Medical dosimetry. 2020 Mar 1;45(1):34-40.
  30. Sardaro A, Petruzzelli MF, D’Errico MP, Grimaldi L, Pili G, Portaluri M. Radiation-induced cardiac damage in early left breast cancer patients: risk factors, biological mechanisms, radiobiology, and dosimetric constraints. Radiotherapy and Oncology. 2012 May 1;103(2):133-42.
  31. Zhang Y, Huang Y, Ding S, Yuan X, Shu Y, Liang J, Mao Q, Jiang C, Li J. A dosimetric and radiobiological evaluation of VMAT following mastectomy for patients with left-sided breast cancer. Radiation Oncology. 2021 Dec;16:1-1.
  32. Higgins PD, Alaei P, Gerbi BJ, Dusenbery KE. In vivo diode dosimetry for routine quality assurance in IMRT. Medical physics. 2003 Dec;30(12):3118-23.
  33. Alaei P, Higgins PD, Gerbi BJ. In vivo diode dosimetry for IMRT treatments generated by Pinnacle treatment planning system. Medical Dosimetry. 2009 Mar 1;34(1):26-9.
  34. Fokou M, Hasford F, Ndontchueng MM, Tagoe SA, Njantang RN, Dery TB, Simo A, Larbi KO, Mantheaw P, Eduful E, Motapon O. In-vivo dosimetry with EBT-3 gafchromic films and thermoluminescent dosimeters in breast cancer radiotherapy treatments. Health and Technology. 2023 Jul;13(4):585-600.