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Introduction: : In order to personalize motion compensated radiotherapy with external surrogates, an 
intelligent method is proposed for selecting external surrogates’ motion data on the basis of patient-specific 
respiration pattern. This strategy enhances targeting accuracy and can potentially feed the stereoscopic X-ray 
imaging system and lead to fewer imaging dose, intelligently. 
Material and Methods: We investigate the effects of training data points firstly on correlation model 
construction at pre-treatment step for its training. Then, the same assessment will be done by means of 
updating data points on the model re-construction. Moreover, a recognition algorithm has been developed to 
detect high variability of breathing motion using pre-defined discriminator levels based on external motion 
amplitude. 
Results: The number of training and updating data points can be intelligently optimized depending on the 
breathing pattern of each patient. In addition, by developing recognition algorithm, the shooting time for 
motion data selection is converted from conventional strategy to intelligent approach, accordingly. As 
example, for a patient with high motion variability while the number of critical data points recognized by our 
algorithm is significant, the targeting error with and without utilizing these data points are 4.4 mm and 6.6 
mm, respectively. 
Conclusion: This work promises to be aid a more personalized delivery of motion compensated radiotherapy 
using external surrogates by considering to motion data gathering, according to patient-specific respiration 
pattern. By implementing our strategy, we expect to make a compromise between the performance accuracy 
of correlation model and additional imaging dose. 
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Introduction 
In Stereotactic Body Radiation Therapy (SBRT) 

due to high dose at single fraction, several efforts have 
been made to bring the delivered dose distribution 
closer to the planned one. [1]. But besides all those 
efforts, serious concerns on the accuracy of SBRT 
remain for dynamics tumors located in the chest and 
abdomen regions and move mainly due to respiration. 
One strategy is to combine the tumor volume and its 
likely position totally into an Internal Tumor Volume 
(ITV) as target for irradiating which lead to serious 
side effects [2]. 

Another solution is irradiation under breath hold 
to virtually immobilize the tumor, though this strategy 
requires upmost patient cooperation [3-5]. 
Alternatively, tumor motion gated radiotherapy [6-9] 
and real-time tumor tracking radiotherapy were 
introduced to compensate tumor motion error [10-
13]. At two latter strategies, tumor position 
information must be extracted, by using additional 

motion monitoring systems, mounted in the treatment 
room [14].  

A method for real-time tumor motion monitoring 
is the use of continuous X-ray imaging systems (i.e., 
fluoroscopy) [11, 15-16]. But, fluoroscopy as ionizing 
imaging modality violates the As Low As Reasonably 
Achievable (ALARA) concept [17]. To solve this 
problem, real-time tracking is most frequently 
strategy performed indirectly by means of external 
respiratory signals extracted from surrogates placed 
on the thorax region of the patient’s body [13, 18]. The 
extracted signals are then inferred with the tumor 
motion using consistent correlation models. At our 
multiple previous studies, these correlation models 
have been demonstrated, comprehensively [19-28]. 
Furthermore, due to signal and system latencies, the 
external surrogate motion has to be predicted into the 
future (e.g., for 115ms for robotic radiosurgery) in 
order to allow the motion compensation to be in 
actual real-time [13, 18, 29]. This of course introduces 
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further errors and the quality of prediction modeling 
is also essential to the overall treatment accuracy [21, 
29-31]. 

The overall performance accuracy of the 
correlation modeling system depends on two main 
parameters: 1) the model robustness and its statistical 
uncertainties, [25-27, 32-35] and 2) the numerical 
value along with acquisition time of the extracted 
external-internal motion dataset as highly important 
factor for defining the actual correlation model 
parameters and its performance, accordingly. In this 
work, we investigate the latter parameter in great 
detail by considering their effect on correlation model 
learning phase at pre-treatment step and also on 
model performance and its update on the basis of 
patient-specific respiration pattern that yield to better 
understanding of personalized radiotherapy.  

For current clinical routine, the synchronized 
external internal motion data points are 
conventionally gathered within a routine and pre-
defined period of time. Since, the breathing 
phenomena is highly variable for each patient, 
investigating the extracted data points and their 
acquisition time will be highly valuable in order to 
improve tumor motion tracking, while this issue has 
not been studied in great detail in the past. The 
proposed strategy in this study enhances targeting 
accuracy while it can potentially feed the stereoscopic 
X-ray imaging system and lead to fewer imaging dose, 
accordingly.  

In order to reach this aim, the influence of training 
data points is evaluated on the parameters required 
during the building of the correlation model. This 
approach is then implemented on updating data 
points while the model will be re-constructed during 
the treatment. It worth mentioning that, the proposed 
algorithm is able to select the training and updating 
data points in an intelligent fashion on the basis of 
patient specific breathing behavior. To do this, a 
consistent recognition algorithm is developed to 
quantitatively realize the breathing motion behavior 
by means of pre-defined thresholds using the 
amplitude of external surrogates. This algorithm 
recognize patients with abnormal breathings and the 
correlation model will be further sensitized for tumor 
motion tracking by gathering sufficient training and 
updating data points, intelligently. It should be noted 
that we have implemented our strategy proposed in 
this work on our previously reported fuzzy logic-
based correlation model [25-27] due to its robustness 
for the current investigation. 

Final analyzed results illustrate that since each 
patient has its unique breathing pattern, the process 
of motion data acquisition can be changed from 
conventional fashion to intelligent mode. This is highly 
important for patient with abnormal breathing motion 
as our system demonstrated to be more sensitive and 
will take further images (model points) if needed over 
the course of the treatment. In contrast, for patients 

with regular breathing motion, our system will work 
with less data points and hence the patients imaging 
dose will be reduced, significantly. By this way, the 
most important data points are taken into account 
intelligently during patient respiration and the 
accuracy of correlation model construction and 
performance is increased remarkably that hence yield 
better treatment, compromising also with ALARA 
principle.  

 

Materials and Methods 
Patient database and motion properties 

In this work, the external-internal motion datasets 
include synchronous data of the a) thorax surface 
motion and b) tumor position information from real 
patients treated with the Synchrony™ Respiratory 
Tracking System integrated with the CyberKnife™ 
robotic linear accelerator (Accuracy Incorporated, 
Sunnyvale, CA, USA) [13, 18]. The patients in this 
study were randomly selected from larger patient 
population with dynamic tumors in the thorax and 
abdomen regions. The external motion dataset was 
gathered by an infrared Optical Tracking System (OTS) 
responsible for monitoring (at 25 Hz update rate) three 
external Light Emitting Devices (LED) located on a vest 
that covers the rib cage and abdomen regions of the 
patient (Figure1).  

 

 
 
Figure 1. Block diagram of correlation model construction (first step), 
performance (second step) and update (third step) 

 
The external dataset includes the (Three 

Dimensional) 3D position information of each of the 
three markers as a function of time which represents the 
continuous component of the respiratory signal. In 
contrast, the internal motion dataset represents the actual 
3D tumor position information, i.e., in our case the 
location of implanted internal clip close to the tumor, 
and detected on stereoscopic X-ray images at various 
discrete time points over the respiratory cycle. Table 1 
reports the 3D motion range of the tumor, external 
markers and treatment time. 
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Table 1. patient dataset including external markers and tumor motion properties (RLL: Right Lower Lung, LLL: Left Lower Lung, RUL: Right 
Upper Lung, SI: Superior-Inferior, AP: Anterior-Posterior, LR: Left-Right, STD: Standard Deviation) 
 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Tumor Location RLL LLL PANCREAS 
RIGHT 

HILUM 

CHEST 

WALL 

LEFT 

LUNG 
RUL LIVER 

LEFT 

FLANK 

LEFT 

SPLENIC 
BED 

Tumor Motion on SI (mm) 31.1 70.5 15.8 18.2 2.6 55.8 4.0 18.7 3.0 2.0 

Tumor Motion on LR 
(mm) 

5.0 75.7 15.9 12.4 3.2 25.8 1.8 3.3 2.2 3.5 

Tumor Motion on AP 

(mm) 
3.8 31.9 12.0 7.7 7.7 40.7 6.4 7.8 2.4 4.3 

External Motion (mm) 3.4 96.9 3.3 1.4 1.9 27 5.8 5.5 1.6 6.0 

Imaging points Intervals 

(s), MEAN 
66.9 41.0 55.8 73.7 63.6 71.9 97.6 64.5 58.1 81.7 

Imaging points Intervals 

(s), STD 
33.1 59.2 33.0 38.2 31.7 59.8 44.1 29.1 26.0 32.8 

Total Treatment Time 

(min) 
78.0 97.8 90.1 61.4 59.4 105.4 70.0 41.9 69.7 61.3 

 

 
Figure 2. Fuzzy logic block diagrams 

 

Correlation model and its configuration 
According to our previous studies [26-27, 36-40], we 

utilized a correlation model based on fuzzy logic 
concept which appear to have a better accuracy in 
comparison to other common available modeling 
algorithms. We developed our model by using the 
MatLab software package (The MathWorks Inc., Natick, 
MA, USA) including the fuzzy logic toolbox which 
contains logical operations and if-then rules. As shown 
in figure 2, the correlation model is initially built using 
the training dataset during pre-treatment step (figure 1 
first step).    

Fuzzy Logic was introduced by Lotfi A. Zadeh [41-
49] at 1965. Recently, fuzzy logic is recommended to 
give solutions for problems with qualitative, incomplete 
or imprecise information, while rigorous and analytical 
methods are not able to present precise solution. In fact, 
the fuzzy-based systems extend the classical two-valued 
modeling of concepts and attributes in a sense of gradual 
truth which can be used in the various fields and gives 
the better results regarding with conventional 
mathematical algorithms. 

Membership functions at fuzzy logic systems are key 
components to realize demonstrate the magnitude of 
participation for each data point as input. At our 
proposed fuzzy correlation model data clustering (42-
43) figure out the membership functions (Figure 2, 
lower dashed rectangle).  After configuring, by given a 
data point as input, the Fuzzy Inference System works 
by a) data fuzzification, b) if-then rules induction, c) 

application of implication method, d) output aggregation 
and e) defuzzification steps (Figure 2). 

In the correlation modeling system, the external 
markers position is denoted as X(t)M1-M3, Y(t)M1-M3 and 
Z(t)M1-M3, where x, y and z are the 3D coordinates of 
markers (M1 - M3) at time t. The internal tumor position 
(i.e., in our case the internal clip) is denoted as X(t)C, 
Y(t)C and Z(t)C, where x, y and z are the 3D coordinates 
of the clip (C) at time t. The position dataset is then 
represented in a matrix where each row represents 
synchronous paired data points of external markers and 
internal clip at time point tn (Figure 3). 

First of all, the model is constructed with a certain 
number of data points recorded at various time points in 
the respiratory cycles during the training phase (patient 
alignment). Once the model is visually to the users’ 
satisfaction, the system is ready for treatment (figure 1, 
second step). Note that currently there is no real 
qualitative feedback for the overall model accuracy. 
Only the last point fit accuracy is determined by 
providing a so called correlation error. Furthermore, the 
completeness over the full and mostly irregular 
breathing cycle is also not determined, but only the 
point coverage over the last few minutes is provided.  

During treatment, the model performance accuracy 
is tested by routinely and the model can also be updated 
periodically (figure 1, third step). For this purpose, 
stereoscopic X-ray images are taken at several 
intermittent time points (e.g., every minute, 
conventionally [28, 30]), as illustrated in figure 4. The 
model accuracy at each time point during the treatment 
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should be in an acceptable positional uncertainty range, 
otherwise the tumor motion tracking is not accurate and 
the model must be rebuilt, completely [30].  It should be 
noted that the total treatment time varies from 42 to 90 
minutes in our patients’ group. 

 

Optimization of synchronous motion dataset extraction 
Model performance and update phase: Assuming 

correlation model construction, it’s ready to infer tumor 
trajectory using only external markers dataset, as input. 
If model was trained as well with proper breathing 
pattern, critical motions are not known for modeler, and 
otherwise its performance may yield to large targeting 
errors.  

In this phase we consider to specific times of 
treatment process, while new recorded data points 
(taken by motion monitoring systems) are utilized for 
model testing and updating. This ensure us to realize 
that the targeting error of our model is in acceptable 
uncertainty range. Furthermore, the model can be rebuilt 
using new arrival paired data points. 

In this study, firstly the numbers of updating steps 
and also the time intervals between those updates are 
investigated for each patient.Moreover, the role or the 
importance degree of each update step is taken into 
account, quantitatively by removing some update data 
points throughout treatment process and calculating 
model performance accuracy. 

For this assessment, different patients with normal 
and abnormal breathing motion are considered by 
measuring the amplitude of external markers motion. At 

cases with abnormal respiration, the behavior of external 
markers is highly variable with large amplitudes out of 
normal range and we interestingly focus on these cases 
to investigate our proposed strategy. 

It’s worth mentioning that, our findings at 
performing and updating phases reach us to a 
compromise between model accuracy and ALARA 
principle. Our results will define a new framework at 
SBRT to reduce additional imaging dose while keeping 
treatment quality in acceptable level at same time. 

In this work, motion dataset of tumor and thorax 
surface is taken into account at two phases in order to 
avoid ambiguity: a) at pre-treatment step, while the 
model is learning by means of training data points and 
b) during treatment, while the model is tracing tumor 
motion using only thorax surface motion signal. At latter 
phase, the model performance is also tested and its 
structure is re-configured for better tracing with less 
uncertainty error.  

Model learning phase: The success degree of each 
learning based correlative model, depends highly on the 
properties of training dataset. In our case, training data 
points must represent a good pattern of respiration and 
tumor motion by covering all possible variabilities of 
motion amplitudes and frequencies. To do this, the 
number of training data points and their acquisition time 
are highly important to lead a proper correlation model 
construction. It should be noted that the number of 
training data points is not essentially constant for each 
patient and even for each fraction of a given patient 
during total treatment course. 

 
 

 
Figure. 3 matrices of 3D position information of three external markers with n×9 size (left side) and 3D position information of implanted internal 
clip representing tumor with n×3 size (right side) at pre-treatment step, n is # of paired data points 

   

 
Figure 4. matrices of 3D position information of three external markers with n×9 size (left side) and 3D position information of implanted internal 
clip representing tumor with n×3 size (right side) at pre-treatment step 
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First of all, the effect of the number of training 
dataset on model construction at learning phase is 
considered. Our patient’s dataset is as time series log 
files in ASCII format and the number training data 
points of each patient are easily accessible to be changed 
in time stamp file. In fact, each recorded data point has 
its membership activation code and therefore a training 
data point at pre-treatment can belong to update point at 
treatment by manipulating its membership activation 
code and vice versa. Using this strategy, various models 
are configured with various Number of Training Data 
points (NTD) for each patient and targeting errors of the 
models can be compared with each other and also with 
CK modeler, applied clinically.  

 

Determination of abnormalities in breathing 

phenomena during treatment 
Furthermore, we developed an additional subroutine 

to sensitize the monitoring systems against abnormal 
motion changes or strange amplitude with adjustable 
sensitivity degree. Specifically, through the degree of 
motion variation of the external markers during 
treatment, each time point can be classified as 
potentially critical or noncritical to the correlation 
model. To classify the degree of motion variation, the 
amplitude of the external markers motion is compared 
with the average value calculated from a group of 
recorded external markers motion amplitudes as 
required component for model building and updating. 
This average value is calculated according to the 
following formula: 

𝐴
𝑎𝑣𝑒

= 2/𝑁𝑇𝐷∑ (𝐴
𝑒𝑥𝑡

(𝑛))
𝑛=𝑁𝑇𝐷/2
𝑛=1                                                             (1) 

Where NTD is the number of training data points, 
Aext is the amplitude of each external marker motion.  
If the current amplitude of the external marker motion is 
classified as critical for the current correlation model, 
the subroutine would trigger a new data point 
acquisition from the stereoscopic X-ray imager in order 
to update the model. Otherwise, if the current amplitude 
is classified as noncritical, the system would delay 
further imaging in order to reduce imaging dose to the 
patient. By implementing this strategy, stereoscopic X-
ray imager act intelligently to feed the correlation model 
regarding with conventional clinical methods. 
Moreover, this strategy leads imaging dose reduction for 
patients with normal breathing.  
 

Results 
The NTD of our patient group ranged from 6 to 15. It 

should be noted that our patients were randomly selected 

with no considering to tumor type or site. We investigated 

the role of each synchronous paired data point as a) trainer 

during model learning phase and b) as tester and updater 

during model performance phase.  

Figure 5 shows the variation of NTD on Root Mean 

Square Error (RMSE) over 10 patients. As example in 

lower left sub-plot, with our fuzzy logic method we 

determined an optimum NTD with 6 data points that 

yielded the least RMSE. This NTD is less than the NTD 

needed for the currently utilized clinical correlation model 

(8 data points). Such NTD reduction would have saved the 

patient from at least two shots of stereoscopic X-ray imager 

during the model learning phase alone and without any 

reduction in correlation modeling accuracy.  

It should be noted that the parameters of correlation 

model are same for each NTD at each case in order to 

obtain the effect of NTD variation on 3D targeting error. 

As resulted from this figure, there is an optimum NTD for 

each patient, accordingly. As seen, at some cases the 

differences among clinical and optimal NTD are 

remarkable. Since each patient has its unique breathing 

pattern, we cannot implement the same strategy of 

obtaining a constant number for training data points. On 

one hand, the NTD value should be high enough to cover 

the full parts of the regular and irregular breathing cycles. 

On the other hand, by raising the NTD the total imaging 

dose received by patient will be increased which must be 

considered according to ALARA principle. Moreover, less 

NTD will result in less performance accuracy of the 

correlation model for tumor tracking.  

Figure 6 shows the 3D position information of 

synchronized external markers and the tumor motion 

coordinates during initial correlation modeling for a typical 

patient. The training dataset for this patient includes nine 

data points which for our fuzzy logic method are clustered 

and then membership functions with if-then rules are 

applied for model parameter definition. The irregular 

spatial distribution of training data points that results 

variable clustering, has been shown in this figure.   

As mentioned before, another effect of each training 

data point is its acquisition time. The data points must be 

well distributed over the breathing cycles as a function of 

time. Figure 7 illustrates the importance degree of data 

points taken from marker 1 of a given patient with right 

lower lung cancer. We assessed the peaks and valleys of 

each marker motion as critical point versus time. For 

example, at sub-plots depicting the position of external 

marker #1, the second data point is in the valley position 

for the X (LR) direction while this point is in the peak 

position for the Y (AP) and Z (SI) directions. Hence, we 

considered this data point as critical for correlation 

modeling. 
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Figure 5. The effect of different NTD on the targeting error of the correlation model 

 

 
 

Figure 6. 3D spatial coordinate of external marker 1(upper right) external marker 2(upper left) external marker 3(lower right) and tumor position (lower left) 
representing training dataset gathered at pre- treatment step 
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Figure 7. position information of external marker 1 at x (upper left) y (upper right) and z (lower left) directions representing importance degree of data point 
and tumor position (lower right) as function of time at pre-treatment step 

 

Table 2. RMSE calculated with and without selected training data points 
 

patient No. 
data point index 

(removed)  

RMSE of model using all 

training data points (mm) 

RMSE of model without 

removed data points (mm) 

Error increasing percentage of 

column 4 vs. column 3 (%)  

P1 
8 0.93 1.04 11 

2 0.93 1.037 11.83 

P2 
2 1.76 3.22 83.72 

9 1.76 3.41 94.34 

P3 
6 1.59 10.06 529.43 

3 1.59 9.99 524.74 

P4 
7 2.14 2.58 20.00 

2 2.14 2.49 16.42 

P5 
5 1.82 2.18 19.58 

2 1.82 2.16 18.35 

P6 
11 5.66 8.47 49.73 

3 5.66 8.87 56.71 

P7 
4 3.67 11.69 318.52 

3 3.67 5.37 46.42 

P8 
2 2.313 3.04 31.45 

4 2.31 3.00 29.78 

P9 
1 1.46 2.91 99.36 

6 1.46 1.58 8.35 

P10 
2 5.01 5.504 9.88 

6 5.01 5.70 13.81 

 

Table 2 shows the importance degree of some 

training data points. For this aim, some data points 

belonging to specific parts of respiratory cycle and 

classified as critical data points (such as peak or valley 

points) have been removed and the correlation model 

was constructed with and without those data points. In 

fact, each data point has its unique value (weight) in the 

correlation model. For some data points their weights are 

very similar and hence their degree of importance is 

almost the same. To be explicit, for constructing a robust 

correlation model enough data points covering all motion 

variations which are also well distributed over the 

breathing cycles are required in order to allow the best 

model learning process. 

After investigating the effect of each NTD for the 

pre-treatment setup, we assessed the same strategy for 

update data points during the treatment. For this aim, we 

developed a subroutine which acts as discriminator for 

detecting critical data points. The basis of our 

discriminator operation is comparing the amplitude of 

external motion data with the average value of prior 

motion data points. It should be noted that the sensitivity 

degree of this subroutine is adjustable and can be 

numerically controlled. Figure 8 shows a critical data 

point belonging to motion information of one external 

marker for a given patient with left lower lung cancer. As 

seen, this data point has been extracted by means of our 

mathematical statistical subroutine as discriminator.  
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Figure 8. motion amplitude of marker #1 over total treatment time representing the performance of mathematical statistical subroutine for extracting critical 
data points (red point), green point is the average of markers motion in a pre-defined time shown with error bar 

 

 
Figure 9. Tumor tracking for a given patient on SI direction at specific treatment time interval with noncritical imaging data points (blue) and with critical 

data points (red) 

 

Figure 9 represents the important role of critical data 

points among the dataset required for model reconstruction 

during the treatment. This figure includes a comparative 

depiction between two conditions with a) noncritical data 

points (blue line) and b critical data points (red line). The 

critical data points shown in this figure are located at the 

middle part of total treatment time. As illustrated in this 

figure, tumor tracking is more precise in presence of 

critical data points.  
 

Discussion 
In current clinical practice, stereotactic body 

radiotherapy is increasingly performed using external 
surrogates while fluoroscopy-based tracking is rarely 
used in order to minimize additional imaging dose. In 
ideal form, tumor motion monitoring must be done with 
highest possible targeting accuracy while using the least 
X-ray imaging data points in order to fulfill the ALARA 
principle. In external surrogate radiotherapy, 
stereoscopic X-ray imaging as tumor monitoring system 
provides data points intermittently for correlation model 
construction before treatment and also for its 
performance testing and updating during the treatment.  

In this treatment modality, the first problem that 
must be addressed refers to performance accuracy of 
correlation model, which significantly depends on two 
main facts. Firstly, the type and inherent mathematical 
structure of utilized model that is the basis for an 
accurately dose delivery. We previously investigated 
targeting accuracy of several available linear and non-

linear correlation models as comparative studies while 
implementing various mathematical methods with 
variable model parameters definition and demonstrated 
the superiority of fuzzy logic-based model regarding 
with the other modelers [26, 27, 32-34]. Secondly, the 
properties of external-internal motion dataset gathered at 
before and during treatment that significantly impact on 
the model algorithm performance. Both factors are 
highly variable as our main objective in the presented 
study to comprehensively investigate the motion dataset 
properties and the procedure of data gathering without 
any concern to correlation model type and underlying 
mathematical structure.  

For this aim, the acquisition time of monitoring 
systems are important and data points with high degree 
of importance for the correlation model must be 
gathered. Based on our database analysis, , we found 
that the captured data points must not be spatially 
concentrated only around a specific part of breathing 
cycle, but they must be well distributed over the whole 
breathing cycles during the pre-treatment model 
learning phase. By this strategy, the numerical values of 
data points will be significantly different to each other 
and in the wide range of motion amplitude.  

The first challenging issue for us in this work was 
investigation of the role of synchronous data points 
recorded during patient setup. Apparently, the optimized 
training dataset at both quantity and their acquisition 
time will yield a well-trained model with lowest 
tracking error and lowest imaging dose to the patient. 
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Without these optimal factors either the model may not 
fit the actual target motion as well and hence result in 
target miss or the imaging dose will be very high when 
multiple redundant model points are taken. It should be 
noted that, the same concept is true during the treatment 
as second challenge we implemented the same strategy 
to evaluate how often model updating is required and 
when the best time for a model update is indicated.   

According to the results shown in figure 4, the 
number of training data points taken by Cyberknife 
synchrony system are far from being optimal at some 
cases. By changing NTD, the calculated errors were 
reduced using our proposed method in comparison to 
the utilized NTD in real clinical condition. As resulted 
from our study, the NTD collected at model learning 
phase must be large enough to represent a reasonable 
pattern of real breathing cycles of the patient. The 
findings shown at figure 5 illustrates that the NTD 
values can be determined in an intelligent manner. Since 
higher NTD may cause receiving additional imaging 
dose to the patient and lower NTD may result weak 
correlation model, an optimum value is highly advised 
in this section. 

Moreover, in order to assess the importance degree 
of each data point at pre-treatment step, we investigated 
this issue by removing it from the model dataset during 
training and calculating the according model output. The 
model output and the calculated targeting error with and 
without a given data point allowed the determination if 
the point is critical or noncritical to the model 
performance. In fact, when removing important points 
from the model, such as valley or peak point in the 
breathing cycle (figure 7), the targeting error remarkably 
increases pointing to a high importance degree of those 
data points.  

Finally, we added a subroutine to the correlation 
model to significantly increase the sensitivity of the 
monitoring systems according to breathing motion 
variations. A good strategy appears to be, that both 
internal and external motion monitoring systems will 
capture data points while breathing motion amplitudes 
are out of their normal range and even more so during 
respiration baseline changes which may happen 
frequently [28]. The detection of such these 
abnormalities however is no small task and for our 
method it was based on a mathematical subroutine 
added to our developed algorithm. This subroutine 
works by using the past amplitude of breathing cycles 
and is able to extract abnormal breathings on the fly. 
Figure 6 showed the implemented mathematical method 
for critical data point extracting and figure 7 illustrated 
the importance degree of such these data points on 
tumor tracking accuracy.  

The proposed strategy can be very effective for 
patients with abnormal breathing variations and should 
be considered for general clinical routine. Constructing 
a proper model with as minimal data points as possible 
is important and we expect to make better judgment for 
trade-off between the performance accuracy of 

correlation model and additional imaging dose delivered 
by stereoscopic X-ray system.  

It’s worth mentioning that the current effort 
promises to be aid a more personalized delivery of 
motion compensated radiotherapy using external 
surrogates. Future study will focus on data clustering 
and intelligent stereoscopic X-ray imager based on a 
large patient group considering motion behavior of each 
dynamic tumor, in a comparative fashion.  

 

Conclusion 
In this work, we investigated the properties of pre-

treatment and in-treatment motion datasets required for 
correlation model construction and updating during 
radiotherapy with external surrogates. For correlation 
modeling at both learning and performance phases we 
found two dominating factors: a) the number of data 
points must be sufficient and b) the importance degree 
of each data point must be significant. The latter factor 
refers directly to data point acquisition time. Various 
condition for correlation modeling were assessed and 
uncertainty errors of the correlation model was 
considered to represent the best targeting accuracy. We 
found that breathing motions variability must be 
intelligently taken into account during training and 
updating the correlation model in order to ensure a high-
quality radiotherapy treatment. 
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