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Introduction: Heart failure due to myocardial iron overload is one of the main causes of death in thalassemia 
major (TM) patients. Therefore, cardiac magnetic resonance (CMR) imaging method with a multi-echo 
sequence can be used to assess the iron overload of TM patients. This study aimed to evaluate the myocardial 
iron overload in TM patients with automatic left ventricular (LV) segmentation of CMR images. 
Material and Methods: Thirty-six TM patients were selected to acquire CMR images and clinical data. 
Automatic LV segmentation was implemented with U-Net, an automatically adapted deep convolutional 
neural network based on U-Net. With the signal intensity of the LV segmented area, T2* value can be 
calculated at different echo times, a widely used and approved method to assess myocardial iron overload. 
Results: The accuracy of LV segmentation as measured by intersection-over-union (0.95) was substantially 
higher than non-deep learning based methods and at par with other deep learning based methods like. In 
addition, our results indicate that the proposed method outperformed in assessing LV iron overload over 
other deep learning based methods in terms of negative predictive value, positive predictive value, and 
Jaccard. 
Conclusion: Relying on these outcomes, the proposed method as a deep learning based model yields better 
LV segmentation and notably impacts assessing myocardial iron overload. 
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Introduction 
Thalassemia is a blood disorder that causes the 

body to make an abnormal form of hemoglobin, 
resulting in anemia from the excessive destruction of 
red blood cells [1]. The direct effects of thalassemia 
major (TM) on the body's organs and tissues are 
caused by the profoundly damaging effects of anemia 
and the by-products of hemolysis. Indirect effects 
include organ damage caused by iron overload 
following blood transfusions or blood-borne 
infections [2]. Iron losses are typically negligible, and a 
large percentage of the iron used for hemoglobin 
synthesis is heme iron derived from hemoglobin. Each 
blood transfusion introduces approximately 200 
milligrams of iron into the body, and the body has no 
natural way of removing this amount of iron in a short 
time. With repeated blood transfusions, the amount of 
iron deposition in TM patients reaches about 20 times 
normal, resulting in iron overload [3]. Cellular self-
destruction processes will begin if adequate treatment 
is not provided in these cases. The consequences of 
the destruction include a decrease in heart tissue 
function (systole or diastole), cardiac myocyte death, 

the onset of heart failure symptoms, and, eventually, 
patient death. The leading cause of death in TM 
patients associated with blood transfusions is heart 
failure caused by myocardial iron overload [4]. 

With early therapy, thalassemia patients with no 
myocardial iron overload symptoms can return to 
normal life. As a result, prompt diagnosis and 
interventions, such as adjusting the dosage of 
prescription medicine, have the potential to affect the 
outcome. It is challenging to detect patients at risk for 
heart failure early because the left ventricular function 
in thalassemia patients with iron deficiency may be 
normal long after the onset of heart failure [5]. 
Therefore, designing and developing a computer-
aided diagnosis system capable of monitoring 
myocardial iron overload is essential.  

Cardiac magnetic resonance (CMR) imaging 
provides significant information about the structure, 
function, and the location and nature of tissue damage 
in the heart, all of which can assist in determining 
various etiologies of cardiac injury [6]. T2*-weighted 
CMR imaging is a viable method for determining 
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myocardial iron overload. The CMR method is a gold 
standard for measuring cardiac indexes and assessing 
the amount of iron deposition in the heart because it 
can show changes in the volume of cardiac chambers 
during the cardiac cycle [7]. The non-uniformity of the 
magnetic field increases with increasing myocardial 
iron deposition, resulting in a decrease in signal 
proportional to the amount of iron deposition in that 
area. Consequently, T2* decreases in milliseconds. 
According to studies of myocardial iron deposition 
patterns, the ventricular wall deposition is more than 
the atria, and it has a significant correlation with 
whole heart iron deposition. For this reason, imaging 
centers examine iron overload in the ventricular wall 
[8]. 

T2*-weighted CMR images, geometric operations 
and active geodesic contours were used by Luo et al. 
(2015) to segment the left ventricular (LV) and 
assessing iron accumulation in TM patients [9]. The 
correct detection rate (true positive rate) and false 
positive rate of CMR images was 84 percent, and 53 
percent respectively. In general, conventional image 
processing methods were used in this study to assess 
the feasibility of iron overload. Automatic LV 
segmentation was used by Wantanajittikul et al. 
(2016) to determine the amount of iron overload in 
TM patients [10]. All of these investigations need the 
use of an automatic LV segmentation approach as a 
first step in assessing iron overload. Automatic left 
ventricular segmentation faces some technical 
problems, including 1. The overlapping intensity 
distribution of cardiac organ pixels and background 
structures; 2. The variable forms of epicardial and 
endocardial contours in different cardiac slices and 
phases; 3. Background and myocardium structures 
suffer from severe asymmetries; 4. Border 
information is blurred, particularly in apical and basal 
slices; 5. Variability of images among institutions, 
people, or devices; 6. intrinsic noise of cardiac MR 
images [11].  

Testing segmentation methods on small databases 
were one of the previous work's limitations. Prior 
knowledge of semi-automated and user-dependent 
methods was also required. The use of CMR image 
segmentation methods based on deep learning (DL) 
for this purpose was presented by some studies [12-
17] and achieved impressive results in terms of 
accuracy. Automation and high accuracy are 
important points in all these methods. DL networks 
are being used to address most of the problems 
highlighted above.  

Martini et al. (2022) introduced a DL-based 
approach for regional analysis of myocardial T2* 
distribution [18]. A U-Net architecture-based deep 
CNN was trained to segment multi-echo T2*-weighted 
images across various regions of CMR images. The 
results indicated no significant differences in 
segmental T2* values compared to manual 
measurements. However, there remains room for 

improvement in terms of segmentation accuracy and 
repeatability across all CMR sequences. 

In this study, we evaluate cardiac iron overload in 
TM patients using an advanced DL network. We 
employ the U-Net architecture, which offers a 
standardized workflow without the need for extensive 
fine-tuning, making it easy to implement and 
potentially suitable for widespread clinical use. The 
following section provides a detailed description of 
the proposed method, including the CMR image 
dataset and the segmentation technique. The results 
are presented and compared with other methods in 
Section 3, followed by a discussion in Section 4 and 
conclusions in Section 5. 

 

Materials and Methods 
Data 

The CMR images of 37 TM patients and 14 healthy 
subjects were used in this study. A non-probability and 
simple random sampling strategy were used to acquire 
images from February 2016 to January 2019, and for all 
subjects, echocardiographic data and cardiac 
dysfunction were collected. The study's objectives were 
explained to all subjects and written, and verbal 
informed consent was obtained. Interviews with the 
subjects and their records in the file were used to fill out 
the questionnaire form relating to demographic 
information and disease characteristics. The subjects had 
no clinical signs of heart disease and were comprised of 
23 men and 27 women with a mean age of 24.18, a 
standard deviation of 5.560, and an average body 
surface area (BSA) of 1.7514 m2 [19]. 

CMR imaging was performed using a 1.5 Tesla 
Siemens Avanto B17 in Qaem Hospital, Mashhad, Iran. 
The Body Matrix coil had six elements in these 
experiments. A single breath-hold multi-echo gradient 
sequence with retrospective gating in three slices of 
short axis (base, mid, and apex) and eight echo times 
was used to assess the value of iron overload in the 
myocardial. There were three cuts made this way: The 
first was between the papillary muscles (to assess iron 
deposition in the papillary muscles), the ventricular wall 
(which is the thickest part), and the other two were put 
at equal intervals above and below the first cut [19]. 
Exclusion criteria included: 1. Clinical signs of heart 
failure (shortness of breath, decreased activity, swelling 
of the hands and feet, swelling around the eyes, chest 
pain, and heart rhythm disorders), 2. Left ventricular 
systolic dysfunction (LVEF< 50%), 3. Arterial 
hypertension, 4. Renal failure, 5. Diabetes mellitus, 6. 
Pulmonary hypertension, 7. Addiction, 8. Heart valve 
diseases. Imaging with transfusion periods of patients 
was adjusted to one week after blood transfusion [19].  

The multi-echo sequence parameters were as follows 
[20-21]: Position, Supine; number of echo times, 8; first 
echo time, 2.97 milliseconds (ms); last echo time, 21.68 
ms; Flip Angle, 20o; Base resolution, 256; Phase 

resolution, 40%; Voxel size, 3.51.410 millimeters 
(mm); Slice Thickness, 10 mm; Phase Encoding 
Direction, A >> P; Phase Oversampling, 30%; Fat 
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Suppression, Fat Saturation; Concatenations, 1; field of 
view (FOVRead), 359 mm; field of view (FOVPhase), 75 
mm. 

 

Proposed Method 
The left ventricle is first segmented in CMR images 

using U-net in this study. In this segmentation, the 
epicardial and endocardial edges of the left ventricle are 
identified to assess the level of myocardial iron 
overload. Then, to obtain T2* values, an area in the 
interventricular wall bounded by the epicardial and 
endocardial edges is identified, and the signal intensity 
(SI) of this range is determined for each echo time (TE), 
and the exponential decay curve of SI over time was 
plotted. Finally, the T2* values for each range are 
obtained using the following equation [22]: 

*2

TE

TSignal Intensity ke


                                                   (1) 

 

Where, 𝑘 is a constant value, and each TE represents 
an echo time. The value of T2* is inversely proportional 
to the slope of the decay curve line. The minimum 
normal amount of myocardial T2* is 20 ms, and as the 
amount of T2* decreases to less than that, LVEF 
decreases, and atrial volume increases at the end of 
systole and diastole. As a result, a time greater than 20 
ms is considered no iron overload in the myocardia, 
while a time less than that is considered iron overload 
[22]. The accurate segmentation of the LV in CMR 
images was carried out automatically using U-net, and 
other steps to assess myocardial iron overload were 
implemented using MATLAB software (v. R2021b). 

 

Preparing and data augmentation 
CMR images were first prepared before LV images 

segmentation. All images are aligned based on image 
capture with the linear mutual information method [23] 
so that the heart (including the left and right ventricles) 
is in the center of the image. The entire heart area in the 
images is made in the same size using a square crop 
(size is 192×256 pixels). Cropping other areas and 
focusing on the desired area improves the DL network's 
accuracy and efficiency. Using MATLAB software and 
the Image Labeler toolbox, a radiologist meticulously 
delineated the endocardial and epicardial borders of the 
LV in images corresponding to the first, second, and 
third echo times for each short-axis slice. Additionally, 
slices affected by noise or poor quality were excluded 
from the analysis. 

All input images are normalized in terms of 
grayscale distribution; therefore, the grayscale of the 
normalized images has Mean= 0 and SD= 1. In the 
segmentation, mean-variance normalization (MVN) is a 
simple and effective method that significantly improves 
the learning capacity of DL networks. To avoid over-

fitting, the training data in this study were augmented 
with affine transformations such as rotation (90, 180, 
and 270 degrees), vertical and horizontal displacement. 

 

U-net Architecture 
Convolution neural networks (CNNs) are among the 

best methods for image segmentation, providing 
remarkable accuracy and performance in many areas of 
image processing and pattern recognition. CNN's 
training data is based on a supervised end-to-end 
learning approach and automatically feature learning 
[23-24]. Recent advances in CNN architectures such as 
AlexNet, VGGNet, GoogleNet, and ResNet have made 
CNN standard for whole image classification. In this 
study, A U-net (no new U-net) architecture to achieve 
accurate and reproducible segmentation [25]. 

Figure 1 illustrates the U-Net architecture employed 
in this study. U-Net is specifically designed for image 
segmentation tasks, particularly in the field of 
biomedical image analysis. The network derives its 
name from its distinctive U-shaped structure. Below is a 
detailed breakdown of the “U-Net” architecture: 1. 
Encoder Path: The network begins with a contracting 
path, similar to a standard CNN used for image 
classification. This path is tasked with capturing 
contextual information and extracting features from the 
input image. It comprises repeated blocks of two 3×3 
convolutional layers, each followed by a rectified linear 
unit (ReLU) activation function. Batch normalization is 
typically applied after each convolutional layer to 
enhance training stability. Following each convolutional 
block, a 2×2 max pooling operation with a stride of 2 is 
performed to reduce spatial dimensions and expand the 
receptive field. 

2. Bottleneck: The bottleneck of the U-Net 
architecture is the central part of the U shape. It consists 
of repeated convolutional blocks, but unlike the encoder, 
the spatial dimensions are not further reduced. This part 
helps in capturing high-level context information. 3. 
Decoder Path: The decoder path is the expansive part of 
the U-Net, and it is responsible for generating the 
segmentation mask. It is a mirror image of the encoder 
path, and its goal is to localize and refine the 
segmentation boundaries. The decoder path involves 
upsampling the feature maps using transposed 
convolutions (also known as fractionally strided 
convolutions or deconvolutions). This operation 
increases the spatial resolution of the feature maps. 
Concatenation is performed between the feature maps 
from the corresponding encoder and decoder blocks to 
provide detailed localization information. 4. Final 
Layer: The final layer typically consists of a 1×1 
convolutional layer with a softmax activation function. 
This layer outputs a probability distribution over the 
classes for each pixel. 
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Figure 1. A schematic of U-net architecture proposed in this study 
 

The key features of the U-Net architecture are its 
symmetric and U-shaped structure, skip connections that 
concatenate feature maps from the encoder to the 
decoder, and the use of transposed convolutions for 
upsampling. The skip connections help in preserving 
spatial information and gradients during training, which 
is crucial for accurate segmentation. The U-Net 
architecture has proven to be effective in various image 
segmentation tasks, particularly in medical imaging, 
where it has been successfully applied to tasks such as 
cell segmentation, organ segmentation, and tumor 
detection [25]. 

In this study, we also investigate the advantages of 
transfer learning to train the U-Net model using a 
limited number of images. Initially, the model was 
trained on the LV Segmentation Challenge (LVSC) 
database, which consists of 22,000 DICOM images. The 
dataset was divided into an 80-10-10 split: 80% for 
training, 10% for validation, and 10% for testing. The 
network training was conducted on a computer equipped 
with a 12-core Intel i7-7800 CPU running at 3.5 GHz, 
64 GB of RAM, and an NVIDIA Titan Xp GPU with 12 
GB of memory, operating on a Linux system. Experts 
provided LV images with defined contours, and the 
learning process was implemented in convolutional 
filters. For transfer learning, our U-Net model was 
initialized by transferring learned weights from the 
source model, specifically copying weights from 
selected convolutional and upsampling layers. The 
remaining layers were randomly initialized and fine-
tuned through supervised training. In transfer learning, 
the initial learning rate (base_ir) is generally set to a low 
value, typically around 0.001. 

 

Training protocol 
The multinomial logistic loss on per-pixel softmax 

probabilities from input images and ground truths was 
minimized using stochastic gradient descent with a 
momentum of 0.9, parameter weights are randomly 
initialized. In addition, an L2 weight decay 
regularization of 0.0005 and a dropout ratio of 0.5 were 
used to combat the effects of overfitting. The train was 
run for 1000 epochs, and the learning rate was 
calculated using the following equation:  

_ 1
max_

Power

iter
Learning rate base ir

iter

 
   

                          (2)

  
Where base_ir is the initial learning rate and is equal 

to 0.01. iter is the current number of iterations, and 
max_iter is the maximum number of iterations for the 
dataset. Power is 0.5 and to control the decay rate. 
Images of our dataset with data augmentation that 
mentioned before, were split into a training set (400 
slices), validation set (50 slices), and test set (50 slices) 
for evaluation of performance.  

 

Metrics 
In this study, the following metrics are used to assess 

the accuracy and efficiency of the LV automated 
segmentation method using the ground truth as a 
reference. The Jaccard index is a metric that indicates 
the overlap or similarity between two areas that varies 
values from zero to unity. The zero value indicates a 
complete mismatch, and one indicates a perfect match 
with the ground truth. The Jaccard index is defined as:  

( , )
( )

A M A M
J A M

A M A M A M

 
 

                               (3)

  
Where, A considered as an area in the main image 

and M considered as an area the ground truth that are 
compared with each other. Sensitivity (p), specificity 
(q), positive predictive value (PPV), and negative 
predictive value (NPV), are other metrics that are 
defined as: 

0 01 1

1 0 1 1 0 0

, , ,
T TT T

p q PPV NPV
N N T F T F

   
                     (4)

  
Where, T1 and T0 represent the number of correctly 

predicted pixels from the object and background area, 
while, F1 and F0 represent the number of incorrectly 
predicted pixels from the object and background area, 
respectively. The total number of pixels in the object 
area and background are N1 and N0, respectively. 
 

Results 
Results of LV segmentation using the proposed 

approach as well as other methods are reported in this 

section. To that end, the proposed method's results are 

compared with non-DL based methods (Geodesic active 
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contour (GAC) [9] and region growing algorithm [10]), as 

well as DL based method (U-Net [18]). All these 

mentioned methods were re-implemented. Although all the 

details of the methods may not have been considered, in 

regard that the focusing of this research is prediction of iron 

overload as opposed to segmentation performance. In 

addition, the results of iron overload evaluation using the 

proposed method are presented and compared with 

methods [9], [10], and [18].  

Figure 2 (a) shows the two main raw images in the top 

and bottom rows, respectively. A radiologist's epicardial 

and endocardial contours are also visible in this figure 

(column b). Figure 2 (c) shows the segmented area created 

by the proposed method. Non-DL based methods (columns 

d and e) are the most prone to segmentation mistakes, 

while DL based method are the most accurate (columns f). 

In Figure 2 (d-f), the contours drawn outside the epicardial 

boundaries or inside the endocardial boundaries are 

incorrectly enclosed, resulting in an incorrect segmented 

area of the myocardial that is greater or less than its ground 

truth (column b).  

The effectiveness of various methods in LV 

segmenting can be seen by using the metrics presented in 

Table 1. DL based methods achieve the highest 

segmentation accuracy, while non-DL based methods 

achieve the lowest segmentation accuracy. Our U-net 

model for predicting myocardial contours on the LV 

segmentation achieves the best scores in three out of five 

accuracy metrics, including the Jaccard, PPV, and NPV 

indexes and the values of p and q were closely equal to 

previous DL based methods. Note that our results were 

remarkably higher compared with non-DL based methods 

the value of five accuracy metrics.  

Next, the amount of myocardial iron overload is 

evaluated based on the results of LV segmentation. The 

previous section's segmented area is divided into six equal 

areas by six lines at an angle of 60 degrees from each other 

(Figure 3). There is an intraventricular region and a 

ventricular wall in each of the areas. At all TEs, the 

ventricular wall SI was calculated, and the time-signal 

intensity curve was plotted (SI against TE). Then the curve 

will pass through all the obtained points using polynomial 

curve fitting. The decay slope of this curve is proportional 

to T2* time and was calculated from Equation (1).  

Table 2 presents the measured T2* using the proposed 

method, methods [9] and [10]. These findings are based on 

the data collected from 36 TM patients [18]. Table 2 also 

includes clinical descriptions of some patients. As the 

results show, the T2* measured by the proposed method 

with clinical descriptions is very close, while the results are 

significantly different in the methods [9] and [10]. This 

difference is due to the myocardial segmentation method in 

[9] and [10] methods compared to the proposed method. 

Poor segmentation results strongly affect the measured T2* 

and cause a significant difference between it and the real 

size. 

 

 
 

 
                                    (a)                                (b)                               (c)                                 (d)                                (e)                                  (f) 

 

Figure 2. Differences of segmented areas in cardiac MR images using the proposed method and other methods. (a) Raw image, (b) Ground truth, (c) 
Proposed Method, (d) method [9], (e) method [10], (f) method [18]. 

 

 
Table 1. Comparison of different methods efficiency in LV segmentation, (Standard deviation) 

 

Method Type of Method Jaccard p q PPV NPV 

Method [9] Non-DL based 0.64 (0.27) 0.53 (0.18) 0.67 (0.21) 0.50 (0.23) 0.56 (0.09) 

Method [10] Non-DL based 0.58 (0.23) 0.66 (0.20) 0.69 (0.19) 0.51 (0.14) 0.63 (0.12) 

Method [18] DL based 0.82 (0.09) 0.87 (0.11) 0.88 (0.12) 0.84 (0.80) 0.93 (0.09) 

Proposed method DL based 0.95 (0.11) 0.92 (0.14) 0.98 (0.02) 0.95 (0.09) 0.98 (0.02) 
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Figure 3. Curve fitting for T2* in the direction of one of the lines drawn of the myocardium 

 

Table 2. T2* calculation results using the proposed method, method [9], [10], and [18] for all patients 
 

Patient T2* (ms) Proposed method T2* (ms) Method [9] T2* (ms) Method [10] T2* (ms) Method [18] Clinical description 

Patient 1 38.9 35 30 36.5 high ferritin serum level  

Patient 2 20.12 19 20 23  

Patient 3 12.6 13 22 18 with chelation therapy 

Patient 4 30.56 32 30 30  

Patient 5 13.6 14 10 9  

Patient 6 28.9 32 25 22  

Patient 7 20.4 22 19 20  

Patient 8 4.09 3 7 5.5 high ferritin serum level  

Patient 9 2.92 4 8 9  

Patient 10 3.7 4 8 3 high ferritin serum level  

Patient 11 7.6 2 8 3 with chelation therapy 

Patient 12 11.70 15 16 19  

Patient 13 11.90 14 15 16  

Patient 14 6.02 8 10 11  

Patient 15 6.52 9 9 10 high ferritin serum level  

Patient 16 3.98 1 2 2.2  

Patient 17 41.02 37 29 28  

Patient 18 43.02 40 35 28  

Patient 19 36 32 31 30  

Patient 20 20 15 11 9  

Patient 21 13.85 19 12 11  

Patient 22 7.6 9 11 8 high ferritin serum level  

Patient 23 27.03 20 15 19  

Patient 24 14.19 18 21 16  

Patient 25 5.5 7 10 8 high ferritin serum level  

Patient 26 7 9 10 9  

Patient 27 34 38 39 35  

Patient 28 15.9 19 22 35  

Patient 29 39.9 35 35 30  

Patient 30 36.6 30 30 27  

Patient 31 5.2 6 8 7  

Patient 32 7.3 2 1 3  

Patient 33 6.5 3 3 7 high ferritin serum level  

Patient 34 17.9 18 20 22  

Patient 35 2.1 1 5 3  

Patient 36 24.9 29 29 25  

Patient 37 14.3 10 10 12 with chelation therapy 

 

Discussion 
Deep learning image segmentation techniques 

provide high accuracy and facilitate subsequent steps to 
assess the amount of myocardial iron overload. In this 

study, for the first time, we used LV segmentation in 
CMR images by deep neural networks to assess the 
amount of myocardial iron overload in the TM patients. 
The proposed method's segmentation accuracy and 
speed improved by using the LVSC as transfer learning 
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in our model. Moreover, thoracic MRI scans and clinical 
data of thirty-seven TM patients who had myocardial 
iron overload were recruited for this study. 

The presented DL-based method for LV 
segmentation and subsequent assessment of myocardial 
iron overload demonstrates notable advancements in 
accuracy and clinical relevance compared to several 
existing studies, as discussed in the introduction. In 
regarding to segmentation accuracy, Method [9] (GAC-
based Segmentation) exhibits superior segmentation 
accuracy, achieving a Jaccard index of 0.95 and Jaccard 
index of 0.64. The proposed method's segmentation 
accuracy is consistently higher across various metrics, 
emphasizing its robustness in accurately delineating 
myocardial boundaries. In comparison, Method [10] 
(Region Growing Algorithm) achieves a lower Jaccard 
index (0.58) than both the proposed method and Method 
[9]. The proposed DL-based approach excels with a 
Jaccard index of 0.95, highlighting its superior 
segmentation performance. 

According to iron overload assessment, T2* 
measurements obtained by the proposed method exhibit 
close alignment with clinical descriptions, emphasizing 
its reliability in assessing myocardial iron overload. In 
contrast, Method [18] shows significant differences in 
T2* values for several patients, suggesting potential 
limitations in accurately characterizing iron deposition 
in the myocardium. The proposed method's T2* 
calculations demonstrate closer agreement with clinical 
descriptions compared to Method [9] and [10]. The 
superior segmentation accuracy of the proposed DL-
based approach contributes to more reliable T2* 
measurements, reducing discrepancies between 
predicted and actual iron overload. 

The study's comprehensive evaluation, including 
visual comparisons, segmentation accuracy metrics, and 
clinical correlation of T2* values, underscores the 
proposed method's potential clinical applicability. The 
emphasis on accurate segmentation contributes to the 
reliable assessment of myocardial iron overload, 
offering valuable insights for early detection and 
intervention in thalassemia major patients. In summary, 
the presented study significantly advances the state-of-
the-art in DL-based LV segmentation for assessing 
myocardial iron overload in thalassemia major patients. 
The achieved results surpass the accuracy of traditional 
methods and existing DL-based approaches, 
emphasizing the proposed method's potential as a robust 
and clinically relevant tool for enhancing diagnostic 
precision in this critical medical domain. 

One of the limitations of this study was the limited 
number of CMR images of TM patients with the 
relevant clinical data, such as ferritin or transfusion 
index. Furthermore, the disturbance and noise in these 
people's images make image labeling quality difficult 
for radiologists. One of the other study's limits and 
challenges was the initial training of a large number of 
network weights and tuning the hyperparameters.  

It is suggested that future research assess the 
myocardial iron overload using the proposed method at 

specific echo and compare the results. It is also 
proposed that these approaches assess the amount of 
atrium iron overload and its relevance to current 
findings. Since the heart rate of thalassemia patients due 
to chronic anemia is higher than normal, it is 
recommended that the volumes of the heart cavities be 
indexed to the patient's heart rate. In addition, to 
evaluate the myocardial iron overload, T1 and T2 
mapping sequences could be used in MR, and the 
resulting images could be evaluated using the proposed 
methods. This proposed method could be utilized to 
develop a diagnostic aid software for radiologists and 
cardiologists. Research on various cardiac diseases that 
necessitate segmentation of a specific area of the 
myocardium, such as the left ventricle, can benefit from 
this research in the same way. Our study serves as a 
pilot for other methods that process CMR images. 

 

Conclusion 
In conclusion, our study introduces a novel approach 

for assessing myocardial iron overload in TM patients, 
utilizing deep learning-based LV segmentation on CMR 
images. The proposed method, employing the U-net 
architecture, showcases a significant advancement in 
accuracy and efficiency, surpassing traditional 
methodologies. Leveraging transfer learning from the 
LVSC database further enhances the segmentation 
accuracy and speed of our model. 

Our findings demonstrate the superior efficacy of the 
proposed method in estimating myocardial iron overload 
compared to conventional approaches. Deep learning-
based image segmentation proves to be a robust 
solution, outperforming non-deep learning methods, 
particularly crucial in the intricate patterns of 
myocardial MR images where precise LV segmentation 
is paramount. 
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