Influence of Normal Tissue Objective Tools on Treatment Planning System in Nasopharyngeal Carcinoma (NPC): A 3D Printed Anthropomorphic Phantom Study

Document Type : Original Paper

Authors

1 Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, East Java, Indonesia

2 Department of Radiation Oncology, Mochtar Riady Comprehensive Cancer Center (MRCCC) Siloam Hospital Semanggi, Jakarta, 12930, Indonesia

3 Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo – Surabaya 60111, East Java, Indonesia

10.22038/ijmp.2024.76906.2352

Abstract

Introduction: The normal tissue objective (NTO), one of the new aspects in the radiation treatment planning system (TPS), aims to lower the absorbed dose received by organs at risk (OARs) close to the target volume or Planning Target Volume (PTV). This study was conducted to ascertain the impact of planning in nasopharyngeal cancer (NPC) cases both with and without manual NTO settings.
Material and Methods: The study used a 3D printed head and neck phantom exposed to radiation using the Intensity Modulated Radiation Therapy (IMRT) technique with 6000 cGy prescribed dose and divided into 30 fractions to find the discrepancies between the manually calculated absorbed dose­ and the automatic calculated absorbed dose of TPS. Moreover, evaluation parameter indicators, including the homogeneity index (HI), conformity index (CI), gradient index (GI), and comprehensive quality index (CQI), were used to make comparisons. NTO parameter used in manual plans are f0 = 107%, f = 65%, dose fall-off  = 0.05 mm-1, and xstart = 0.75 cm.
Results: The statistical analysis resulted in a significant difference between the calculated absorbed dose and TPS's absorbed dose of Automatic NTO and Manual NTO, whereas, Without NTO plans, there was no statistical difference. The HI values for Automatic NTO, Manual NTO, and Without NTO are 0.118, 0.05 , and 0.053, respectively. The CI values for Automatic NTO, Manual NTO, and Without NTO are 0.91, 0.99, and 0,19. The GI value for Automatic NTO, Manual NTO, and Without NTO are 3.34, 4.94, and 7.29, respectively. CQI parameter showed that the Automatic NTO plan performs better than the Manual NTO plan based on the maximum dose received by the OAR.
Conclusion: In this study, the manual NTO plan showed better performance by reducing hot spots in the central region of PTV.

Keywords

Main Subjects


  1. Shreya Sinha, Ajeet Gajra. Nasopharyngeal Cancer [Internet]. Vol. StatPearls[Internet], StatPearls [Internet]. 2022 [cited 2024 Jan 14]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459256/
  2. Adham M, Kurniawan AN, Muhtadi AI, Roezin A, Hermani B, Gondhowiardjo S, Bing Tan I, Middeldorp JM. Nasopharyngeal carcinoma in indonesia: Epidemiology, incidence, signs, and symptoms at presentation. Chin J Cancer. 2012;31(4):185–
  3. UICC New Global Cancer. Global Cancer Data: GLOBOCAN 2018. 2018 Sep 12 [cited 2024 Jan 14]; Available from: https://www.uicc.org/news/global-cancer-data-globocan-2018
  4. Daly-Schveitzer N., Juliéron M., Gan Tao Y., Moussier A., Bourhis J. Intensity-modulated radiation therapy (IMRT): Toward a new standard for radiation therapy of head and neck cancer? Eur Ann Otorhinolaryngol Head Neck Dis. 2011 Nov 1;128(5):241–
  5. Emami B, Sethi A, Petruzzelli GJ. Influence of MRI on target volume delineation and IMRT planning in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2003 Oct 1;57(2):481–
  6. Sun XS, Li XY, Chen QY, Tang LQ, Mai HQ. Future of Radiotherapy in Nasopharyngeal Carcinoma [Internet]. Vol. 92, Br J Radiol. 2019. Available from: https://academic.oup.com/bjr/article/92/1102/20190209/7449038
  7. Baba MH, Singh BK. In-vivo skin dose measurement using gafchromic EBT3 film dosimetry in the radiation therapy of Head and Neck cancers: 2DRT versus IMRT. J Radiat Res Appl Sci. 2022 Jun;15(2):170–
  8. Xhaferllari I, Wong E, Bzdusek K, Lock M, Chen JZ. Automated IMRT planning with regional optimization using planning scripts. J Appl Clin Med Phys [Internet]. 2013;14(1):176– Available from: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1120/jacmp.v14i1.4052
  9. Caldeira A, Trinca WC, Flores TP, Obst FM, Brito C de S, Grüssner MM, Costa AB. The Influence of Normal Tissue Objective in the Treatment of Prostate Cancer. J Med Imaging Radiat Sci. 2020 Jun 1;51(2):312–
  10. Indrayani L, Anam C, Sutanto H, Subroto R. Determination of Optimal Normal Tissue Objective Settings for Radiation Therapy Planning of Brain Tumor. International Journal of Progressive Sciences and Technologies (IJPSAT. 2022;31(2):61–
  11. Wang D, DeNittis A, Hu Y. Strategies to optimize stereotactic radiosurgery plans for brain tumors with volumetric-modulated arc therapy. J Appl Clin Med Phys. 2020 Mar;21(3):45–
  12. Bell JP, Patel P, Higgins K, McDonald MW, Roper J. Fine-tuning the normal tissue objective in eclipse for lung stereotactic body radiation therapy. Med Dosim. 2018;43(4):344–
  13. Sharbo G, Hashemi B, Bakhshandeh M, Rakhsha A. Radiobiological assessment of nasopharyngeal cancer IMRT using various collimator angles and non-coplanar fields. J Radiother Pract. 2021 Jun 1;20(2):168–
  14. Bisello S, Cilla S, Benini A, Cardano R, Nguyen NP, Deodato F, Macchia G, Buwenge M, Cammelli S, Wondemagegnehu T, Uddin AFMK, Rizzo S, Bazzocchi A, Strigari L, Morganti AG. Dose-volume constraints fOr oRganS at risk in radiotherapy (CORSAIR): An ``all-in-one’’ multicenter-multidisciplinary practical summary. Curr Oncol. 2022 Sep;29(10):7021–
  15. 1Endarko E, Hanum UQ, Marufah AL, Wirayudha AI, Sjafrudin IR. Fantom Antropomorfik Kepala-leher Spesifik Kasus Kanker Nasofaring Untuk Jaminan Mutu Dan Kontrol Radioterapi. Dokumen Paten. 2022.
  16. León Marroquin EY, Herrera González JA, Camacho López MA, Villarreal Barajas JE, García-Garduño OA. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density. J Appl Clin Med Phys. 2016;17(5):466–
  17. Patel G, Mandal A, Choudhary S, Mishra R, Shende R. Plan evaluation indices: A journey of evolution. Vol. 25, Reports of Practical Oncology and Radiotherapy. Urban and Partner; 2020. p. 336–
  18. Sudarsi Asril Y, Departemen Fisika Fakultas MIPA Jln. Lingkar Kampus Raya Depok 16424, Edy Wibowo W, A. Pawiro S, Departemen Radioterapi RSUP Cipto Mangunkusumo Jln. Diponegoro No. 71 Jakarta Pusat 10430. Verifikasi Dosimetri Teknik Stereotactic Body Radiotherapy (Sbrt) Metastasis Tulang: Studi Kasus Menggunakan Fantom Homogen Dan Inhomogen. In PRODI Pendidikan Fisika dan Fisika UNJ; 2016.
  19. Bolt M, Clark CH, Nisbet A, Chen T. Quantification of the uncertainties within the radiotherapy dosimetry chain and their impact on tumour control. Phys Imaging Radiat Oncol. 2021 Jul;19:33–
  20. Hakansson K, Specht L, Aznar MC, Rasmussen JH, Bentzen SM, Vogelius IR. Prescribing and evaluating target dose in dose-painting treatment plans. Acta Oncol. 2014 Sep;53(9):1251–
  21. Sukhikh E, Sukhikh L, Malikov E, Izhevsky P, Sheino I, Vertinsky A, Baulin A. Uncertainty of measurement absorbed dose by GAFCHROMIC EBT3 dosimeter for clinical electron and photon beams of medical accelerators. Med Radiol Radiat Saf. 2019 Jun;56–
  22. Kern A, Bäumer C, Kröninger K, Wulff J, Timmermann B. Impact of air gap, range shifter, and delivery technique on skin dose in proton therapy. Med Phys. 2021 Feb;48(2):831–
  23. Barragán-Montero AM, Nguyen D, Lu W, Lin MH, Norouzi-Kandalan R, Geets X, Sterpin E, Jiang S. Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations. Med Phys. 2019 Aug;46(8):3679–