Radiation Absorbed Dose Evaluation of [177Lu] Lu-DOTMP Radiopharmaceutical in Man Based On Biodistribution Data in Wistar Rats

Document Type : Original Paper

Authors

1 Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

10.22038/ijmp.2024.77199.2357

Abstract

Introduction: Bone metastasis is the advanced stage of solid malignant tumors. Bone-avid beta-emitting radiopharmaceuticals such as lutetium-177-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene phosphonic acid ([177Lu]Lu-DOTMP) are effectively utilized for bone pain palliation. Radiation absorbed dose evaluation of such radiopharmaceuticals is needed in clinical works for estimating the risk associated with the usage of recently developed radiopharmaceuticals.
Material and Methods: The radiation absorbed dose of [177Lu]Lu-DOTMP radiopharmaceutical was evaluated for adult men based on biodistribution data in Wistar rats. The Medical Internal Radiation Dosimetry (MIRD) dose calculation method and the Sparks and Aydogan methodology were applied. Results: About 40% of the injected activity is accumulated on the surface of the trabecular and compact bones. Radiation absorbed dose of red bone marrow and osteogenic cells were estimated at 0.89±0.07 and 5.12±0.40 mGy/MBq, respectively. The maximum administrated activity was obtained at 32.2 MBq/kg (0.87 mCi/kg) of body weight with about 11.6 Gy absorbed dose of bone surface for a 70 kg adult man. The effective dose of [177Lu]Lu-DOTMP radiopharmaceutical was estimated at 0.19±0.02 mSv/MBq and the urinary bladder wall and kidneys absorbed doses were evaluated at about 0.20±0.02 mGy/MBq and 0.05±0.01 mGy/MBq, respectively.
Conclusion: This study indicated that [177Lu]Lu-­DOTMP radiopharmaceutical can provide palliative care for bone metastases with low undesired doses to other normal tissues.

Keywords

Main Subjects


  1. Erraoudi M, El Bouchiti K, Herrassi Y, El ghalmi M, Raoui Y, Bouzekraoui Y, et al. Solution for processing pelvic bone metastases with Halcyon TM 2.0 on lateral and longitudinal isocenters treatment plans using the VMAT technique: A comparative study. Iran J Med Phys. 2024;21:228-6.
  2. Bahrami-Samani A, Bagheri R, Jalilian AR, Shirvani-Arani S, Ghannadi-Maragheh M, Shamsaee M. Production, quality control and pharmacokinetic studies of 166Ho-EDTMP for therapeutic applications. Sci Pharm. 2010;78:423-33.
  3. Bagheri R. 177Lu-EDTMP radiation absorbed dose evaluation in man based on biodistribution data in Wistar rats. Nucl Eng Technol. 2023;55:254-60
  4. Dalvand S, Sadeghi M. Bone marrow dosimetry for 141Ce-EDTMP as a potential bone pain palliation complex: a Monte Carlo study. Appl Radiat Isot. 2022;182: 110113.
  5. Karimian A, Haddadi A. Comparison of dosimeters between radionuclides in brachytherapy for liver cancer. Iran J Med Phys. 2018;15(Special Issue-12th. Iranian Congress of Medical Physics):81.
  6. Sharma S, Singh B, Koul A, Mittal BR. Comparative therapeutic efficacy of 153Sm-EDTMP and 177Lu-EDTMP for bone pain palliation in patients with skeletal metastases: patients' pain score analysis and personalized dosimetry. Front Med. 2017;4:46.
  7. Johari-Daha F, Shafiei M, Sheibani Sh, Tavakoli YH, Mazidi M, Mirfalah MH, et al. Production of 177Lu and formulation of Ethylene diamine tetramethylene phosphonate (EDTMP) kits as a bone-seeking radiopharmaceutical. Iran J Radiat Res. 2010;7:229-34.
  8. Agarwal KK, Singla S, Arora G, Bal C. 177 Lu-EDTMP for palliation of pain from bone metastases in patients with prostate and breast cancer: A phase II study. Eur J Nucl Med Mol Imaging. 2015;42:79-88.
  9. Das T, Chakraborty S, Unni PR, Banerjee S, Samuel G, Sarma HD, et al. 177Lu-labeled cyclic polyaminophosphonates as potential agents for bone pain palliation. Appl Radiat Isot. 2002;57: 177-84.
  10. Chakraborty S, Das T, Unni PR, Sarma HD, Samuel G, Banerjee S, et al. 177Lu labeled polyaminophosphonates as potential agents for bone pain palliation. Nucl Med Commun. 2002;23:67-74.
  11. Abbasi IA. Preliminary studies on 177Lu-labeled sodium pyrophosphate (177Lu-PYP) as a potential bone-seeking radiopharmaceutical for bone pain palliation. Nucl Med Biol. 2012;39:763-9.
  12. Abbasi IA. Studies on 177Lu-labeled methylene diphosphonate as potential bone-seeking radiopharmaceutical for bone pain palliation. Nucl Med Biol. 2011;38:417-25.
  13. Yadav MP, Ballal S, Meckel M, Roesch F, Bal C. [177Lu]Lu-DOTA-ZOL bone pain palliation in patients with skeletal metastases from various cancers: efficacy and safety results. EJNMMI Res. 2020;10:1-13.
  14. Chakraborty S, Das T, Sarma HD, Venkatesh M, Banerjee S. Comparative studies of 177Lu-EDTMP and 177Lu-DOTMP as potential agents for palliative radiotherapy of bone metastasis. Appl Radiat Isot. 2008;66:1196-205.
  15. Das T, Chakraborty S, Sarma HD, Banerjee S. 177Lu-DOTMP: a viable agent for palliative radiotherapy of painful bone metastasis. Radiochim Acta. 2008;96:55-61.
  16. Bollampally N, Shukla J, Mittal BR, Sood A, Mohanty M, Kapoor R, et al. Efficacy and safety of 177Lu-DOTMP in palliative treatment of symptomatic skeletal metastases: a prospective study. Nucl Med Commun. 2021;42:964-71.
  17. Chakraborty S, Vimalnath KV, Rajeswari A, Chakravarty R, Sarma HD, Radhakrishnan E,  et al. A ‘mix-and-use’ approach for formulation of human clinical doses of 177Lu-DOTMP at hospital radiopharmacy for management of pain arising from skeletal metastases. J Labelled Comp Radiopharm. 2017;60:410-9.
  18. Das T, Chakraborty S, Sarma HD, Banerjee S. Formulation and evaluation of freeze-dried DOTMP kit for the preparation of clinical-scale 177Lu-DOTMP and 153Sm-DOTMP at the hospital radiopharmacy. Radiochim Acta. 2015;103:595-604.
  19. Kumar C, Sharma R, Das T, Korde A, Sarma H, Banerjee S, et al. 177Lu-DOTMP induces G2/M cell cycle arrest and apoptosis in MG63 cell line. J Labelled Comp Radiopharm. 2018;61:837-46.
  20. Bryan JN, Bommarito D, Kim DY. Comparison of systemic toxicities of 177Lu-DOTMP and 153Sm-EDTMP administered intravenously at equivalent skeletal doses to normal dogs. J Nucl Med Technol. 2009;37:45–
  21. Salek N, Shamsaei M, Ghannadi Maragheh M, Arani SS, Bahrami-Samani A. Production and quality control 177Lu (NCA)—DOTMP as a potential agent for bone pain palliation. J Appl Clin Med Phys. 2016;17:128-39.
  22. Askari E, Harsini S, Vahidfar N, Divband G, Sadeghi R. 177Lu-EDTMP for Metastatic Bone Pain Palliation: A Systematic Review and Meta-analysis. Cancer Biother Radiopharm. 2021;36:383-90.
  23. Yuan J, Liu C, Liu X, Wang Y, Kuai D, Zhang G, et al. Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer. Clin Nucl Med. 2013;38:88-92.
  24. Shinto AS, Shibu D, Kamaleshwaran KK, Das D, Chakraborty S, Banerjee S, et al. 177Lu-EDTMP for treatment of bone pain in patients with disseminated skeletal metastases. J Nucl Med Technol. 2014;42:55-61.
  25. Bal C, Arora G, Kumar P, Damle N, Das T, Chakraborty S, et al. Pharmacokinetic, dosimetry and toxicity study of 177Lu-EDTMP in patients: phase 0/I study. Curr Radiopharm. 2016;9:71-84.
  26. Balter H, Victoria T, Mariella T. 177Lu-labeled agents for neuroendocrine tumor therapy and bone pain palliation in Uruguay. Curr Radiopharm. 2016; 9:85-93.
  27. Das T, Banerjee S. Theranostic applications of lutetium-177 in radionuclide therapy. Curr Radiopharm. 2016;9:94-101.
  28. Mirkovic M, Milanovic Z, Stankovic D, Petrovic D, Vranjes-Duric S, Jankovic D, et al. Investigation of 177Lu-labeled HEDP, DPD, and IDP as potential bone pain palliation agents. J Radiat Res Appl Sci. 2020;13:27-36.
  29. Liu S, Edwards DS. Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals, Bioconjug Chem. 2001;12:7-34.
  30. Nilsson S, Larsen RH, Fossa SD, Balteskard L, Borch KW, Westlin JE, et al. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005;11:4451-59.
  31. Razghandi F, Izadi R, Mowlavi A. Calculation of the dose of samarium-153-ethylene diamine tetramethylene phosphonate (153Sm-EDTMP) as a radiopharmaceutical for pain relief of bone metastasis. Iran J Med Phys. 2015;12:278-83.
  32. Vigna L, Matheoud R, Ridone S, Arginelli D, Della Monica P, Rudoni M, et al. Characterization of the [153Sm]Sm-EDTMP pharmacokinetics and estimation of radiation absorbed dose on an individual basis. Phys Med. 2011;27:144-52.
  33. Breitz HB, Wendt III RE, Stabin MS, Shen S, Erwin WD, Rajendran JG, et al. 166Ho-DOTMP radiation-absorbed dose estimation for skeletal targeted radiotherapy. J Nucl Med. 2006;47:534-42.
  34. Rosch F, Herzog H, Plag C, Neumaier B, Braun U, Müller-Gartner HW, et al. Radiation doses of yttrium-90 citrate and yttrium-90 EDTMP as determined via analogous yttrium-86 complexes and positron emission tomography. Eur J Nucl Med. 1996;23:958-66.
  35. Lyra M, Papanikolos G, Phinou P, Frantzis AP, Jordanou J, Limouris GS. Rhenium-186-HEDP dosimetry and multiple bone metastases palliation therapy effects. Radionuclide Ther Oncol Curr Status Future Aspects. 2003;10:51-60.
  36. Liepe K, Hliscs R, Kropp J, Runge R, Knapp FF, Franke WG, et al. Dosimetry of 188Re-Hydroxyethylidene diphosphonate in human prostate cancer skeletal metastases. J Nucl Med. 2003;44:953-60.
  37. Dalvand S, Sadeghi M. Bone marrow dosimetry for 141Ce-EDTMP as a potential bone pain palliation complex: A Monte Carlo study. Appl Radiat Isot. 2022;182:110113.
  38. Bayat Z, Saeedzadeh E, Vahidfar N, Sadeghi M, Farzenefar S, Johari-Daha F, et al. Preparation and validation of [67Ga]Ga-phytate kit and Monte Carlo dosimetry: An effort toward developing an impressive lymphoscintigraphy tracer. J Radioanal Nucl Chem. 2022;331:691-700.
  39. Sparks RB, Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. Oak Ridge Associated Universities, TN (United States); 1999 Jan 1.
  40. ICRP, ICRP Publication 23, Report of the Task Group on Reference Man, Pergamon Press, New York, 1975.
  41. Peters JM, Boyd EM. Organ weights and water levels of the rat following reduced food intake. J Nutr 1966;90:354-60.
  42. Miller G, Klumpp JA, Poudel D, Weber W, Guilmette RA, Swanson J. Americium systemic biokinetic model for rats. Radiat Res 2019;192:75-91.
  43. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature. J Nucl Med. 2009;50:477-84.
  44. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the Second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023-7.
  45. Nenot JC, Brenot J, Laurier D, Rannou A, Thierry D. ICRP Publication 103. The 2007 recommendations of the international commission on radiological protection.2007;37.
  46. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Annals of the ICRP. 2002 Sep 1;32(3-4):1-277.
  47. Louw WKA, Domeh C, van Rensburg AJ, Hugo N, Alberts AS, Forsyth OE, et al. Evaluation of samarium-153 and holmium-166-EDTMP in the normal baboon model. Nucl Med Biol. 1996;23:935-40.
  48. Bagheri R, Bahrami-Samani A, Ghannadi-Maragheh M. Estimation of radiation absorbed dose in man from 166Ho-EDTMP based on biodistribution data in Wistar rats. Radiat Phys Chem. 2021;187:1-6.
  49. Bagheri R, Afarideh H, Ghannadi-Maragheh M, Shirmardi SP, Bahrami-Samani A. Study of bone surface absorbed dose in treatment of bone metastases via selected radiopharmaceuticals: using MCNP4C code and available experimental data. Cancer Biother Radiopharm. 2015;30:174-81.
  50. Belanger MJ, Krause SM, Ryan C, Sanabria-Bohorquez S, Li W, Hamill TG, et al. Biodistribution and radiation dosimetry of 18F-PEB in nonhuman primates. Nucl Med Commun. 2008;29:915-9.
  51. Das T, Shinto A, Karuppuswamy Kamaleshwaran K, Banerjee S. Theranostic treatment of metastatic bone pain with 177Lu-DOTMP. Clin Nucl Med. 2016;41:966-7.