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Introduction: Brain tumors (BTs) pose significant challenges in medical diagnosis and treatment due to their 
heterogeneity and complex characteristics. Accurate and precise segmentation of BTs in magnetic resonance 
images (MRIs) is crucial for effective treatment planning and patient care. In this study, we propose an 
ensemble deep-learning (DL) model to address the challenging task of BT segmentation. We aim to achieve 
accurate localization and delineation of tumor regions across different axial views. 
Material and Methods: The dataset used in this study consists of 3064 T1-weighted contrast-enhanced MRI 
images obtained from patients diagnosed with glioma, meningioma, and pituitary tumors. Image 
preprocessing techniques, including normalization and intensity transformation, were applied to enhance the 
contrast and standardize the intensity values. The DL model is based on the DeepLabV3+ architecture 
combined with three well-known deep convolutional neural networks as encoders: MobileNetV2, ResNet50, 
and XceptionNet. 
Results: The proposed ensemble model, with MobileNetV2 as the encoder, demonstrated superior 
performance in BT segmentation. The model achieved an average dice similarity coefficient of 0.938 and a 
global accuracy of 0.997. Compared to alternative models, MobileNetV2-DeepLabV3+ showed significant 
accuracy and segmentation precision improvements. 
Conclusion: The ensemble DL model, leveraging the strengths of MobileNetV2 and DeepLabV3+, offers a 
robust and efficient solution for accurate BT segmentation in MRI images. The model’s ability to delineate 
tumor regions holds great promise for enhancing diagnosis and treatment planning in BT analysis. Future 
work will explore further fine-tuning techniques and evaluate the model’s performance on larger datasets to 
assess its generalization capabilities. 
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Introduction 
Brain tumors (BTs) are characterized by the 

aberrant proliferation of cellular structures within the 
cranial cavity or its adjacent structures. These 
neoplastic growths originate from diverse cell 
populations present within the brain, such as neurons, 
glial cells, and meninges (1). BT can manifest in 
individuals across all age groups, spanning from 
infants to older adults, and possess the potential to 
exert substantial effects on neurological functioning 
and overall well-being (2). BT can be categorized as 
primary or metastatic BT based on its origin. Primary 
BT originates from cells within the brain, while 
metastatic BT occurs when cancerous cells from other 
body parts spread to the brain (3). 

Early detection of BT is a crucial factor in 
enhancing treatment outcomes. Various medical 
imaging techniques, including computed tomography, 
single-photon emission computed tomography, 
positron emission tomography, magnetic resonance 
spectroscopy, and magnetic resonance imaging (MRI), 
are employed to gather valuable information 

regarding the shape, size, location, and metabolic 
activity of BT, aiding in their diagnosis (4). While these 
imaging modalities are often combined to yield the 
most detailed insights into BT, MRI is widely regarded 
as the gold standard technique due to its excellent soft 
tissue contrast and widespread availability (3). 
However, BT exhibits significant heterogeneity, 
presenting unique variations in size, shape, and 
location in each individual. Their boundaries are 
frequently ambiguous or irregular, posing 
considerable challenges in accurately identifying and 
segmenting them (3,5). 

Precise segmentation of BT plays a pivotal role in 
enabling healthcare professionals to discern the 
precise location, dimensions, and morphology of such 
tumors, while also facilitating an evaluation of their 
growth patterns and progression (6). Additionally, a 
precise segmentation mask holds significant potential 
in aiding surgical planning, postoperative monitoring, 
and ultimately enhancing the chances of patient 
survival (7). Furthermore, accurate segmentation of 
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BT assumes particular significance in formulating 
individualized treatment regimens, encompassing 
radiation therapy and chemotherapy, thus 
contributing to improved patient outcomes (6). Many 
algorithms and techniques have been devised to 
address the challenge of BT segmentation. These 
include thresholding methods, region-based 
segmentation, fuzzy clustering, k-means clustering, 
and deep learning (DL)-based approaches (8–11). 
Despite significant advancements in this domain, 
achieving precise segmentation of BT remains an 
unresolved matter. In the last decade, deep 
convolutional neural networks (CNNs) have 
succeeded remarkably across various domains, 
particularly in semantic segmentation tasks. Several 
CNN architectures, including DeepLab (12), RefineNet 
(13), fully convolutional networks (14), and SegNet, 
have demonstrated significant advancements in 
performance and accuracy. These models adopt deep 
CNN-based image classifiers to the challenging 
semantic segmentation task. 

Accordingly, Ben Naceur et al. (15) aimed to 
improve BT segmentation in multi-sequence MRI 
images to facilitate early clinical diagnosis, treatment, 
and follow-up. They developed three new DL models 
using end-to-end incremental deep CNNs. These 
models differed from other CNN-based approaches by 
incorporating a guided approach to find suitable 
hyper-parameters instead of relying on trial and error. 
Moreover, the authors employed ensemble learning to 
create a more efficient model. Their models were 
evaluated using the BRATS-2017 dataset, obtaining an 
average dice similarity coefficient (DSC) of 0.88 over 
the complete brain region. 

Sailunaz et al. (16) developed an automated 
system with an easy-to-use web app interface for 
detecting and segmenting BT from MRIs. It has over 
90% accuracy and allows healthcare professionals to 
offer feedback for improved predictions and 
segmentations. 

Havaei et al. (17) utilized deep neural networks for 
BT segmentation of glioblastomas seen in MRI images, 
which can have diverse shapes, sizes, and contrasts. 
They explored CNN architectures that efficiently 
combine local and global contextual features. They 
also employed a convolutional implementation of a 
fully connected layer for faster processing. A 2-phase 
training procedure was introduced to address tumor 
label imbalance, and a cascade architecture further 
enhances performance. 

Rehman et al. (18) used a modified SegNet to 
accurately identify BT in MRI images. Their approach 
had efficient training and achieved a global accuracy 
of 99.93%. Mary Cynthia and Merlin Livingston (19) 
compared four BT segmentation techniques using MRI 
images to determine the most accurate method. They 
evaluated Otsu thresholding, the level set method, the 
fuzzy C-means level set method, and the discrete 
wavelet transform (DWT) with morphological 

processing, where they achieved 96% accuracy using 
the DWT-morphology technique. 

Ranjbarzadeh et al. (20) developed a BT 
segmentation system that utilizes a preprocessing 
approach to work on smaller image parts, reducing 
computing time and overfitting. They introduced a 
cascade to mine local and global features efficiently. 
They also presented a novel distance-wise attention 
mechanism to improve segmentation accuracy, where 
their model achieved mean DSC of 0.9203, 0.9113, and 
0.8726 for different tumor regions on the BRATS 2018 
dataset. Aggarwal et al. (21) developed an efficient 
method for BT segmentation using an improved 
residual network (ResNet). Their approach achieved 
nearly 85% accuracy on BRATS 2020 MRI data. 
Aboussaleh et al. (22) utilized a CNN-based approach 
for simultaneously predicting and segmenting 
cerebral tumors. They addressed the challenges of 
specialist intervention, long run-time, and feature 
extraction using a simple binary annotation for tumor 
presence. The DL model is trained on the BraTS 2017 
dataset with different types of gliomas. Their method 
achieved 91% accuracy in tumor classification and an 
82.35% DSC in tumor segmentation. 

Tripathi et al. (23) presented a fully automatic DL 
method, called CCN-PR-Seg-net, for BT segmentation 
in MRI images. Their method focused on preserving 
boundary details of irregular tumor regions, using 
internal residual connections in the encoder and 
decoder to avoid information loss. Cross-channel 
normalization and parametric rectified linear units 
are employed for a balanced network output. Their 
model exhibited a global accuracy of 0.998. 
Gunasekara et al. (24) developed a threefold DL 
architecture for accurate BT segmentation. It involves 
a CNN-based classification stage, a region-based CNN 
for localization stage, and a Chan-Vese segmentation 
stage. Their architecture achieved an average DSC of 
0.92, demonstrating its glioma and meningioma 
segmentation effectiveness. Haq et al. (25) presented a 
hybrid approach utilizing deep CNNs and machine 
learning classifiers to precisely segment and classify 
BT in MRIs. In the initial stage, a CNN was introduced 
to learn the feature map of the brain MRI images, with 
a focus on the tumor marker region. Subsequently, a 
faster region-based CNN was developed to facilitate 
tumor region localization, and a region proposal 
network was employed, achieving a DSC of 97.1% in 
BT segmentation. Eker et al. (26) conducted a BT 
segmentation using a dataset with diverse images 
regarding structural complexity, viewing angles, 
various device usage, noise, and bias field effects. 
Importantly, no preprocessing techniques were 
applied to the dataset. They employed foundational 
models, specifically U-Net and fully convolutional 
network, and extended their scope to include transfer 
learning-based approaches. They incorporated VGG, 
XceptionNet, InceptionNet, and ResNet architectures 
as the foundational structures within these models, 
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wherein they reached a DSC of 0.9169 using the VGG-
19. 

Sobhaninia et al. (27) proposed a DL-based 
solution for BT segmentation, which is called LinkNet. 
They examined diverse angles of MRI, employing 
various networks for the segmentation process. The 
efficacy of using distinct networks for MRI image 
segmentation is assessed through a comparative 
analysis with results obtained from a single network. 
Experimental evaluations reveal that a DSC of 0.73 is 
attained for a single LinkNet model for all directions of 
MRI images. Badža and Barjaktarović (28) have 
introduced a compact convolutional neural 
autoencoder for BT segmentation based on semantic 
segmentation. Various data division and evaluation 
methods assessed the model’s generalization ability in 
medical diagnostics. The best results, with a pixel 
accuracy of 99.28% and a DSC of 72.87%, were 
achieved using record-wise data division and training 
with an augmented dataset. 

This study’s primary contribution lies in applying 
the ensemble architecture of DeepLabV3+ in 
conjunction with three established deep CNNs, namely 
ResNet50, MobileNetV2, and XceptionNet. Should this 
approach prove successful, it offers significant 
benefits to partitioners and physicians by enabling 
precise localization of BT with reduced effort and 
computational resources compared to existing 
methods. The rationale for using hybrid methods, such 
as ensemble DL models, arises from the need to 
balance accuracy, precision, and robustness in BT 
segmentation. This task is particularly challenging due 
to tumor heterogeneity and complex morphology. 
While some models may report nearly perfect 
accuracy under ideal conditions, these results do not 
consistently generalize across diverse cases and 
datasets. Hybrid methods like the ensemble approach 
combining MobileNetV2, ResNet50, and XceptionNet 
within DeepLabV3+ provide multiple perspectives 

and encoding strengths, reducing model bias and 
enhancing adaptability across varied axial views in 
MRI images. This multi-encoder configuration 
addresses both fine-detail segmentation and 
generalization, thereby potentially achieving high 
accuracy levels while minimizing overfitting, making 
the model better suited for clinical deployment. Such 
hybrid techniques ensure reliable tumor delineation, 
which is crucial for improving treatment planning and 
patient outcomes. 

 

Materials and Methods 
Figure 1 depicts the primary framework employed in 

this study. The MRI dataset was acquired from the 
Figshare repository and subjected to image processing 
techniques. Subsequently, an ensemble architecture 
consisting of three well-known deep CNN models and 
DeepLabV3+ was utilized for BT segmentation. 

 

Dataset 
This study utilized BT’s publicly available dataset, 

consisting of a wide-ranging compilation of 3064 T1-
weighted contrast-enhanced MRI images captured in the 
form of two–dimensional slices with a resolution of 
512×512 pixels in the Nanfang Hospital, Guangzhou, 
China, and General Hospital, Tianjin Medical 
University, China, from 2005 to 2010 (29,30).  

It was made available online in 2015, and 
subsequent updates were provided until 2017. This 
dataset has garnered significant attention in recent MRI 
tumor analysis research. To ensure the rigor and 
reliability of our proposed model, we exclusively 
utilized the most recent version of the dataset, which 
was last updated in 2017. The provided images were 
derived from sagittal, coronal, and axial planes and stem 
from a cohort of 233 patients diagnosed with three 
specific categories of BT: glioma, meningioma, and 
pituitary tumor. 

 

 

 
 
Figure 1. The main framework of this study involves gathering the BT dataset from the Figshare repository and applying image 
processing techniques. Subsequently, an ensemble architecture comprising CNN and DeepLabV3+ is employed for BT segmentation 
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The dataset encompasses a total of 1426 slices 
corresponding to glioma cases, 708 slices originating 
from individuals with meningioma, and 930 slices 
representing pituitary tumors. This study considered 
these three types of tumors (glioma, meningioma, and 
pituitary) as one class, named tumors, and the 
brain/other parts as the brain. Subsequently, a binary 
segmentation was conducted, wherein each image was 
segmented into the distinct segments of tumors and 
brain, facilitating a comprehensive dataset analysis. 

 

Image Preprocessing 
Before incorporating the images into the deep 

network training, a few image-processing steps were 
executed. It is important to note that the dataset is 
provided in “.mat” format, facilitating access to the data 
for further analysis and manipulation. Given that the 
intensity values of the MRI images are contingent upon 
the specific imaging protocol and scanner utilized, 
normalization was applied to scale the intensities within 
the original MRI images to a standardized range 
between 0 and 255. Subsequently, a linear intensity 
transformation function (ITF) was employed to enhance 
the contrast of the images. This function effectively 
modified the intensity values within the images, 
resulting in an improved visual differentiation of various 
image regions based on their intensity levels. ITF is 
expressed as follows: 
𝐽 =  (𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝑖𝑚) + 𝑂𝑓𝑓𝑠𝑒𝑡,  (1) 

 

where 𝑖𝑚 denotes the input image, scaling factor 
refers to the ratio by which intensity values are 

multiplied to map the original intensities (𝐿𝑜𝑤𝑖𝑛  to 

𝐻𝑖𝑔ℎ𝑖𝑛) to the new range (0–255), which can be 
expressed as follows: 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐻𝑖𝑔ℎ𝑜𝑢𝑡−𝐿𝑜𝑤𝑜𝑢𝑡

𝐻𝑖𝑔ℎ𝑖𝑛−𝐿𝑜𝑤𝑖𝑛
. (2) 

 

𝐿𝑜𝑤𝑖𝑛 and 𝐻𝑖𝑔ℎ𝑖𝑛 define the designated contrast 
limits within the input grayscale image that are intended 
to be associated with specific values in the resultant 

output image. 𝐿𝑜𝑤𝑖𝑛 and 𝐻𝑖𝑔ℎ𝑖𝑛 is the bottom 1% and 
the top 1% of all pixel values and are calculated as 

cumulative distribution function (𝐶𝐷𝐹)  > 0.01 and 

𝐶𝐷𝐹 ≥ 0.99, respectively. A CDF is expressed as 
follows: 

𝐶𝐷𝐹 =
𝑐𝑢𝑚𝑠𝑢𝑚(𝑁)

𝑠𝑢𝑚(𝑁)
, (3) 

 

where 𝑁 will calculate from the following equation: 

𝑁 = 𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝑖𝑚
𝑛𝑏𝑖𝑛𝑠

⁄ ) (4) 

 
In this equation, 𝑛𝑏𝑖𝑛𝑠 = 256 if the image is in the 

form of an 8-bit integer. Correspondingly, 𝐿𝑜𝑤𝑜𝑢𝑡  and 

𝐻𝑖𝑔ℎ𝑜𝑢𝑡 represent the contrast limits that are sought for 
the output grayscale image and are considered as 0 and 
255, respectively.  

The offset in the linear ITF is used to ensure that the 

lower bound of the input intensity range (𝐿𝑜𝑤𝑖𝑛) maps 
precisely to the desired lower bound of the output range 

(𝐿𝑜𝑤𝑜𝑢𝑡) after scaling. Offset is expressed as below: 
Offset = 𝐿𝑜𝑤𝑜𝑢𝑡 − (𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝐿𝑜𝑤𝑖𝑛) (5) 

 
The ITF scales the input image intensity values such 

that any pixel value below 𝐿𝑜𝑤𝑖𝑛 is set to 𝐿𝑜𝑤𝑜𝑢𝑡 =0, 

and any pixel value above 𝐻𝑖𝑔ℎ𝑖𝑛 is set to 𝐻𝑖𝑔ℎ𝑜𝑢𝑡 =
255. This step helps in defining the range of intensities 
to be adjusted. Figure 2 illustrates the raw, normalized, 
and adjusted images after applying ITF, showcasing the 
evident image enhancement achieved through this 
process. 

Figure 3 displays the histogram representation of the 
images depicted in Figure 2 before and after applying 
ITF. The histogram serves as a visual depiction of the 
distribution of pixel intensities within the images. The 
comparative histograms provide insights into the 
changes in intensity distribution resulting from ITF, 
showcasing the alterations in contrast and highlighting 
the impact of the transformation on the overall image 
characteristics.

 

 

 

 

 

 

 

 
Raw Image  Normalized Image  Adjusted Image 

 
Figure 2. The sample of raw, normalized, and adjusted image by ITF 
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Figure 3. The resultant histogram of the normalized and adjusted 
image by ITF 

 
In the subsequent stage, an image-cropping process 

was implemented to confine the region of interest within 
the boundaries of the brain. Specifically, the extraneous 
background portions present in the original images were 
removed by performing a cutout operation. This step 
ensured that the resulting image exclusively 
encompassed the relevant brain structures, eliminating 
background noise or irrelevant image content. The 
image cropping procedure aimed to enhance the 
accuracy and specificity of subsequent analyses and 
interpretations focused solely on the brain region. 

 

Deep Learning 
In the past decade, DL applications have surged 

across diverse healthcare domains, enabling 
advancements such as neurological disease detection 
(31,32), breast cancer and automated segmentation of 
medical images through imaging techniques (33–37), 
and the identification of neurodevelopmental disorders 
using non-imaging modalities like 
electroencephalography (38,39). The ensemble model 
developed in this study is a pixel-wise segmentation 
network that leverages the DeepLabV3+ architecture 
(40), along with three widely recognized pre-trained 
networks: MobileNetV2 (41), XceptionNet (42), and 
ResNet50 (43). Combining these components, the 
ensemble model aims to achieve enhanced performance 
in pixel-wise segmentation. DeepLabV3+, an extended 
version of DeepLabV3, is founded on an encoder-
decoder framework. 

The DeepLabV3+ architecture served as the primary 
framework for the ensemble model. It is a well-
established pixel-wise segmentation network 
incorporating both an encoder and a decoder. Using 
convolutional layers, the encoder network effectively 
captures high-level features and contextual information 
from the input image. On the other hand, the decoder 
network refines the feature maps obtained from the 
encoder through upsampling and skip connections, 
generating precise pixel-wise segmentation predictions. 
The DeepLabV3+ architecture was chosen because it 
handles complex visual patterns and produces accurate 
segmentations. 

 

Encoder 
The encoder component of DeepLabV3+ comprises 

a deep CNN that commonly employs a modified version 
of either the widely recognized XceptionNet or 
MobileNet architecture as its underlying network. This 
selection of the base network establishes a robust 
framework for proficient feature extraction, owing to 
their adeptness in capturing localized and global 
information. The encoder network incorporates 
convolutional layers, pooling layers, and activation 
functions in its architecture. These layers are organized 
hierarchically, progressively enlarging the network’s 
receptive field and receptive context. As the input image 
traverses these layers, it undergoes a sequence of 
convolutions and pooling operations, extracting features 
across various scales and levels of abstraction. 

Several pre-trained networks can be utilized as 
feature extractors in the encoder component of 
DeepLabV3+. In our algorithm, we have employed 
ResNet50, XceptionNet, and MobileNetV2 as potential 
networks. Specifically, we have adapted and optimized 
the weights of DeepLabV3+ in combination with these 
pre-trained CNNs, taking into account the characteristics 
of our data. The relevant details regarding the image 
input dimension, number of layers, and number of 
learnable parameters are briefly presented in Table 1. To 
accommodate space limitations and avoid confusion, 
this study does not describe the pre-trained CNN 
architectures. Their detailed description can be found in 
their original articles (41-43). 
 
Table 1. The specification of the utilized deep CNN as the encoder 
part of ensemble architecture 
 

Network 
Image 
input size 

Number 
of layers 

Total learnable 
parameters 
(millions) 

ResNet50 224×224 177 25.5 

XceptionNet 299×299 170 22.9 

MobileNetV2 224×224 154 3.5 

 

Decoder 
The decoder component of the DeepLabV3+ 

architecture is pivotal in enhancing the encoder’s feature 
maps and generating precise pixel-wise segmentation 
predictions. Serving as a complementary element to the 
encoder, it facilitates the model in recovering intricate 
details and enhancing spatial resolution within the 
segmentation output. The decoder component of 
DeepLabV3+ constitutes an integral element aimed at 
restoring spatial information and generating high-
resolution segmentation maps. It achieves this through 
upsampling and convolutional layers, which enhance the 
spatial resolution of the feature maps derived from the 
encoder. These layers progressively upscale the feature 
maps to match the original dimensions of the input 
image. The decoder section of DeepLabV3+ 
encompasses several key components and operations: 

Upsampling Layers: These layers employ bilinear 
interpolation or transposed convolutions to magnify the 
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feature maps, effectively recovering spatial details and 
enabling more detailed segmentation predictions. 

Skip connections: Establishing connections 
between corresponding layers in the encoder and 
decoder sections, skip connections play a vital role in 
integrating low-level and high-level features. This 
integration aids in the recovery of fine details and 
enhances segmentation accuracy. The inclusion of skip 
connections enables the model to capture both local and 
global information, contributing to improved 
segmentation results. 

Atrous spatial pyramid pooling (ASPP): The 
ASPP module, present in both the encoder and decoder 
parts, connects the two components. It encompasses 
parallel atrous convolutions with varying dilation rates, 
allowing for capturing multi-scale contextual 
information. The output of the ASPP module is typically 
concatenated with the upsampled feature maps from the 
decoder, thereby enriching the overall feature 
representation. 

Convolutional layers: Convolutional layers within 
the decoder component further process and refine the 
upsampled feature maps. These layers capture intricate 
details and spatial relationships through a series of 
convolutional operations, ensuring the segmentation 
predictions are accurate and precise. 

Final segmentation output: The output of the 
decoder part is a high-resolution segmentation map. 
Each pixel in this map corresponds to a predicted class 
or label, providing a pixel-wise segmentation prediction. 
In applications such as BT segmentation, this output 
delineates the regions of interest, such as the tumor 
region. 

By incorporating the decoder part in DeepLabV3+, 
the model effectively recovers spatial details and 
generates fine-grained segmentation predictions by 
leveraging the hierarchical information captured by the 
encoder. The combination of upsampling layers, skip 
connections, ASPP, and convolutional layers contribute 
to refining the feature maps, enhancing spatial 
resolution, and improving the overall accuracy of the 
segmentation output. 

 

Training Options 
The computations and implementation of the 

proposed ensemble model were carried out using 
MATLAB R2022b software on a machine equipped 
with an Intel Core i7 11700k CPU, 32GB of DDR4 
memory, MATLAB R2022, and Nvidia GEFORCE 
RTX 3070 graphics cards. The selection of 
hyperparameters in this study was accomplished through 
a systematic trial-and-error procedure to optimize these 
hyperparameters, where the optimal hyperparameters 
were determined: stochastic gradient descent with 
momentum using learning rate of 0.001, a momentum of 
0.9, L2 regularization of 0.0005, a maximum epoch of 2, 
a mini-batch size of 32, and CrossEntropy as a loss 
function. In addition, an early-stopping criterion was 
incorporated into our training process. The training was 
halted if the validation accuracy did not improve over 

three consecutive validation steps. This approach helps 
prevent overfitting and ensures the model is trained until 
it reaches its optimal performance.  

The dataset was partitioned into three subsets for 
specific purposes: 70% for training, 20% for testing, and 
10% for validation. This division allows for effective 
model training, unbiased evaluation of unseen data 
during testing, and validation to fine-tune 
hyperparameters and monitor the model’s performance. 
Various metrics, including global accuracy, mean 
accuracy, intersection over union (IoU), weighted IoU, 
boundary F1 score (BF), and DSC, were used to 
evaluate the model’s segmentation performance. 
 

Results 
To assess the performance of the proposed model, a 

subset of 20% of the entire dataset was designated as the 

test data. Several metrics were then calculated to evaluate 

the model’s global performance in segmentation. These 

metrics include global and mean accuracy, average and 

weighted IoU, BF, and DSC. BF is a metric that measures 

the alignment between the predicted boundary of each class 

and the actual boundary. It indicates how well the predicted 

boundary corresponds to the actual boundary and is 

calculated through the following equation: 

𝐵𝐹 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁄  (6) 

 

In Equation (4), precision is computed by dividing the 

number of true positives by the sum of true positives and 

false positives. This calculation measures the proportion of 

correctly identified positive instances out of all the 

instances predicted as positive. Recall, also known as 

sensitivity, is calculated by dividing the number of true 

positives by the sum of true positives and false negatives. 

This calculation quantifies the proportion of actual positive 

instances that the model correctly identifies out of all the 

positive instances present in the data. 

Global accuracy is a metric that calculates the ratio of 

correctly classified pixels, irrespective of class, to the total 

number of pixels. It provides a quick and computationally 

efficient estimation of the percentage of pixels that are 

classified correctly. IoU also referred to as the Jaccard 

similarity coefficient (JSC), was utilized to assess the 

percentage of similarity between the predicted labels 

generated by the model and the ground truth (GT) labels 

for each of the two classes under consideration. IoU is 

expressed as follows: 

𝐼𝑜𝑈, 𝐽𝑆𝐶 = (𝑃𝑟𝑒𝑑 ∩ 𝐺𝑇) (𝑃𝑟𝑒𝑑 ∪ 𝐺𝑇)⁄    (7) 

 

where 𝑃𝑟𝑒𝑑 is the predicted labels by model. DSC is 

then calculated using the following equation: 

𝐷𝑆𝐶 = 2 ∗ 𝐽𝑆𝐶 1 + 𝐽𝑆𝐶⁄    (8) 

 

The average IoU of each class, weighted by the number 

of pixels in that class, is a metric that takes into account the 

disproportionate sizes of classes in an image. It reduces the 

impact of errors in smaller classes on the overall quality 

score. This metric provides a more balanced assessment of 

the IoU performance by assigning higher weightage to 
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classes with larger pixels.Table 2 presents the calculated 

metrics as both the average and standard deviation values 

across the entire test set. The average values provide an 

overall measure of the performance metrics, while the 

standard deviation reflects the degree of variation or 

dispersion among the calculated metrics. 

The evaluation metrics, reported as mean ± standard 

deviation across the entire test set, provide insights into the 

performance of each model. The global accuracy measures 

the overall accuracy of the models in correctly classifying 

tumor and brain regions. Among the models, MobileNetV2 

demonstrated the highest global accuracy with a score of 

0.997 ± 0.001. ResNet50 closely followed with a global 

accuracy of 0.997 ± 0.002, while XceptionNet achieved a 

slightly lower value of 0.995 ± 0.004. The mean accuracy 

metric indicates the average accuracy of the models in 

segmenting different tumor regions. MobileNetV2 

exhibited the highest mean accuracy of 0.945 ± 0.044, 

followed by ResNet50 with a value of 0.886 ± 0.072. 

XceptionNet yielded a mean accuracy of 0.837 ± 0.164. 

The mean IoU metric quantifies the overlap between the 

predicted and GT tumor regions. MobileNetV2 achieved a 

mean IoU of 0.885 ± 0.037, while ResNet50 and 

XceptionNet obtained scores of 0.859 ± 0.069 and 0.786 ± 

0.143, respectively. 

The weighted IoU was calculated by weighting the IoU 

scores based on class frequencies to account for class 

imbalance. MobileNetV2 attained the highest weighted 

IoU of 0.995 ± 0.003, followed by ResNet50 with a score 

of 0.995 ± 0.004. XceptionNet achieved a slightly lower 

weighted IoU of 0.991 ± 0.008. Lastly, the mean BF metric 

measures the accuracy of the models in segmenting tumor 

boundaries. MobileNetV2 exhibited the highest mean BF 

of 0.931 ± 0.074, followed by ResNet50 with a value of 

0.908 ± 0.087. XceptionNet yielded a mean BF of 0.864 ± 

0.146. The results indicate that MobileNetV2 outperformed 

the other models in terms of global accuracy, mean 

accuracy, mean IoU, weighted IoU, and mean BF. 

ResNet50 and XceptionNet also performed well, although 

with slightly lower scores in most metrics compared to 

MobileNetV2. These findings suggest that employing 

MobileNetV2 as a backbone of DeeolabV3+ is a promising 

model for accurate BT segmentation. 

 
 

Table 2. The result of BT segmentation for the test set. Results are presented as average ± standard deviation 
 

Model Global accuracy Mean accuracy Mean IoU Weighted IoU Mean BF DSC 

MobileNetV2 0.997±0.001 0.945±0.044 0.885±0.037 0.995±0.003 0.931±0.074 0.938±0.021 

ResNet50 0.997±0.002 0.886±0.072 0.859±0.069 0.995±0.004 0.908±0.087 0.922±0.043 

XceptionNet 0.995±0.004 0.837±0.164 0.786±0.143 0.991±0.008 0.864±0.146 0.872±0.097 
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Figure 4. The global accuracy and loss function of the three ensemble models utilized in the study at various iterations, where the loss function is considered 

as binary cross entropy 
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Figure 5. The resultant BT-segmented images from different axial views. The red contour represents GT, while the green contour illustrates the pixel-wise 

segmented region predicted by the ensemble models. 

 

Figure 4 depicts the global accuracy and loss function 

of the three ensemble models utilized in the study at 

various iterations, where the loss function is considered as 

binary cross entropy.The global accuracy in all three 

models shows an upward trend with increasing iterations 

until it reaches a plateau, indicating that further iterations 

do not lead to significant improvements in accuracy. 

Despite implementing an early-stopping criterion, all 

models were trained for a total of 2 epochs or 178 

iterations. Additionally, the loss function in all three 

models demonstrates a consistent downward trend as the 

iterations progress. This downward trend indicates that the 

models’ training process is converging towards the 

potential minimum of the loss function. As the iterations 

continue, the loss gradually decreases until it reaches a 

point where further iterations have a negligible impact on 

reducing the loss. This suggests that the models have 

achieved a relatively optimal state in terms of minimizing 

the loss function. 

Figure 5 illustrates a sample of BT-segmented images 

from different axial views, showcasing the capabilities of 

the ensemble models employed for BT segmentation. In 

this depiction, the GT is represented by the red contour, 

while the green contour illustrates the pixel-wise 

segmented region predicted by the ensemble models. The 

visual representation exemplifies the potential and 

effectiveness of the utilized ensemble models in accurately 

delineating BT regions. 
 

Discussion 
This research focuses on developing and optimizing 

an ensemble comprising DL-based algorithms to 
segment BT regions in MRI images. The primary 
objective of this study is to achieve accurate and reliable 
segmentation results for tumor regions across a range of 
images obtained from different axial planes. The 
adopted DeepLabV3+ architecture leverages the ASPP 
convolutional structure, offering distinct advantages in 
generating dense feature maps and preserving spatial 
information. This property improves localization 
accuracy, consequently impacting the overall 
segmentation process. The favorable outcomes reported 
in previous studies and the present work reaffirm the 
efficacy of the ASPP module in achieving successful 
segmentation outcomes for various tasks (44,45). 

By employing the ASPP module, the DeepLabV3+ 
architecture enhances the feature extraction process by 
incorporating multiple parallel atrous convolutions at 
different dilation rates. This enables the model to 
capture multi-scale contextual information effectively, 
allowing for a more comprehensive understanding of the 
image and its semantic content. The resulting dense 
feature maps obtained from the ASPP module contribute 
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to the precise localization of object boundaries and 
boundaries of interest, which is crucial for accurate 
segmentation. The combination of MobileNetV2 as the 
encoder and DeepLabV3+ as the segmentation 
framework has yielded impressive results, with the 
highest achieved accuracy among the evaluated models 
(44). MobileNetV2 is a lightweight and efficient CNN 
architecture. It is specifically designed for mobile and 
embedded devices to balance model size and 
computational efficiency. The MobileNetV2 
architecture incorporates depthwise separable 
convolutions and linear bottlenecks to reduce the 
number of parameters while maintaining expressive 
power. These design choices result in a compact 
network that can efficiently process input images (46). 

When employed as the encoder within the 
DeepLabV3+ model, MobileNetV2 exhibits exceptional 
proficiency in extracting high-level features and 
capturing contextual information from BT images. The 
utilization of depth-wise separable convolutions 
facilitates efficient feature extraction, while the 
integration of linear bottlenecks aids in preserving 
crucial spatial information. This amalgamation plays a 
pivotal role in ensuring precise localization and 
segmentation of tumors, contributing to the model’s 
overall accuracy. 

The findings derived from our experimental analysis 
unequivocally demonstrate the superiority of the 
MobileNetV2-DeepLabV3+ combination over the 
alternative models considered in this study. The 
obtained accuracy surpasses that of competing 
architectures, including ResNet50 and XceptionNet. 
This outcome serves as a testament to the efficacy of 
MobileNetV2 in effectively addressing the intricacies 
associated with BT segmentation. Moreover, integrating 
the DeepLabV3+ framework further enhances the 
process by enabling meticulous refinement and precise 
delineation of tumor boundaries. Consequently, this 
combination proves to be highly effective in achieving 
accurate and reliable BT segmentation results, which is 
of great significance in clinical applications. 

The exceptional performance of the MobileNetV2-
DeepLabV3+ combination can be attributed to the 
synergistic integration of their respective strengths. 
MobileNetV2 excels in efficient feature extraction, 
effectively extracting relevant and discriminative 
features from BT images. On the other hand, 

DeepLabV3+ demonstrates remarkable capabilities in 
semantic segmentation, enabling the model to accurately 
classify and delineate tumor regions based on the 
extracted features. 

By leveraging the efficient feature extraction 
capabilities of MobileNetV2 and the semantic 
segmentation prowess of DeepLabV3+, our model 
exhibits a comprehensive understanding of the 
underlying tumor structures. This combination enables 
the model to capture fine-grained details of the tumors, 
facilitating accurate segmentation and localization. The 
efficient feature extraction ensures that relevant 
information is preserved, while the semantic 
segmentation techniques refine the segmentation 
boundaries with high precision. 

The synergy between MobileNetV2 and 
DeepLabV3+ allows our model to leverage the strengths 
of both architectures, leading to the effective capture of 
intricate tumor characteristics and the achievement of 
accurate segmentation outcomes. This comprehensive 
understanding of tumor structures is crucial for accurate 
diagnosis and treatment planning in BT analysis. Table 
3 provides a concise overview of a comparative analysis 
conducted in conjunction with several state-of-the-art 
studies that employed the same dataset. Notably, our 
model demonstrated superior performance compared to 
the alternative models assessed in these studies. Our 
result demonstrates an approximate 20% superiority 
over the outcomes reported in references (47–49) 
concerning DSC. Furthermore, our findings exhibit 
competitive performance closely aligned with the results 
reported in references (50) and (51). A higher DSC 
signifies more significant overlap and agreement 
between the predicted and GT segmentation masks. This 
indicates that our model’s segmentation results align 
more closely with the manually annotated GT data, 
reflecting improved accuracy and precision in 
identifying tumor regions within the brain images. This 
higher DSC suggests enhanced performance and 
reliability in our segmentation approach compared to the 
studies cited in the references (47–49). In terms of 
accuracy, our results demonstrate competitiveness with 
the accuracy reported in references (49–51), 
underscoring the efficacy of DL methods in the 
challenging task of BT segmentation. This suggests that 
our model’s accuracy is comparable to and potentially 
higher than that achieved by the mentioned models. 

 
Table 3. Comparative analysis of our performance with other state-of-art studies that utilized the same dataset 
 

Ref Year Model Performance 

(27) 2018 DL-based solution, named LinkNet DSC of 0.730 

(18) 2019 
Deep autoencoder-decoder framework for semantic segmentation, 
named SegNet 

DSC of 0.931 
Accuracy of 0.934 

(28) 2021 compact convolutional neural autoencoder 
DSC of 0.728 
Accuracy of 0.992 

(24) 2021 DL and active contouring 
DSC of 0.920 
Accuracy of 0.945 

(26) 2023 VGG-19 and fully connected network DSC of 0.916 

Proposed model Ensemble architecture of DeepLabV3+ and MobileNetV2 
DSC of 0.938 
Accuracy of 0.997 
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Despite the excellent result achieved, it is pertinent 
to acknowledge certain limitations that warrant 
consideration. Firstly, while exhibiting commendable 
accuracy, the proposed model might face challenges in 
scenarios with highly heterogeneous or rare tumor 
subtypes not extensively represented in the current 
dataset. This indicates the need for further investigation 
on a more diverse dataset encompassing a broader 
spectrum of BT variations. Moreover, despite the 
robustness demonstrated by our method, there exists 
room for improvement in terms of interpretability and 
explainability. Integrating interpretability features into 
the model architecture would contribute to a more 
transparent decision-making process, facilitating better 
clinician understanding and trust. 

 

Conclusion 
To conclude, the study’s primary contribution lies in 

addressing the challenges of BT segmentation by 
leveraging the strengths of efficient feature extraction 
and semantic segmentation techniques. This study 
presents a robust ensemble architecture integrating 
DeepLabV3+ with three prominent deep CNNs: 
MobileNetV2, ResNet50, and XceptionNet, to segment 
BT in MRI images accurately. The proposed models are 
validated using the Figshare BT dataset, wherein the 
MobileNetV2-DeepLabV3+ combination demonstrated 
superior performance, achieving an accuracy of 0.997 
and DSC of 0.938, showcasing its efficacy in capturing 
intricate tumor characteristics and achieving accurate 
segmentation outcomes. It also offers significant 
benefits to partitioners and physicians by enabling 
precise localization of BT with reduced effort and 
computational resources compared to existing methods. 

The findings of this study contribute to the ongoing 
efforts to advance the field of BT segmentation, with 
implications for improved clinical diagnosis and 
treatment planning. As medical imaging technologies 
and DL methodologies evolve, the proposed ensemble 
architecture is a promising step towards more accurate 
and efficient BT segmentation, aiding healthcare 
professionals in their critical decision-making processes. 

Future endeavors could explore integrating vision 
transformer models and DL architectures enriched with 
attention mechanisms to address these limitations and 
advance the field. Vision transformers have shown 
promise in capturing long-range dependencies in 
images, potentially benefiting the segmentation of 
intricate and diverse BT patterns. Also, incorporating 
attention blocks into the model could further refine the 
focus on relevant regions, enhancing the model’s 
interpretability and adaptability. Furthermore, given the 
inherent challenge of class imbalance in medical image 
datasets, future work should consider implementing 
advanced techniques such as ensemble learning or focal 
loss to address this issue, thereby enhancing the model’s 
efficacy across diverse tumor types. 
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