Calculation of Involved and Noninvolved Organs Doses in Carbon Therapy of Brain Tumor Using GEANT4 Simulation Toolkit

Document Type : Original Paper

Authors

1 Department of Nuclear Physics, Faculty of Science, University of Mazandaran P.O.Box 47415-416, Babolsar, Iran

2 Department of Nuclear Physics, Faculty of Science, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran

3 Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran

4 Golestan university faculty of science, department of physics, Golestan, Iran

10.22038/ijmp.2023.71006.2251

Abstract

Introduction: This study used the GEANT4 Monte Carlo toolkit for radiation transport simulations in brain carbon therapy, incorporating a human phantom model to accurately assess dose delivery to targeted and non-targeted organs. Weight factors were employed to generate a Spread Out Bragg Peak (SOBP).
Material and Methods: The study used the ORNL-MIRD phantom to simulate carbon therapy for brain tumors, finding that the optimal energy range for carbon ions was 2420-2560 MeV to effectively cover the tumor. To achieve a homogeneous radiation dose, a Spread Out ragg Peak (SOBP) was generated using multiple Bragg peaks with specific intensity factors. Beam parameters were also evaluated per ICRU guidelines.
Results: This study estimated the flux and dose distributions of secondary particles—protons, electrons, neutrons, alpha particles, and photons—in the brain tumor and surrounding tissues. We calculated the cumulative dose from both carbon ions and secondary particles, finding an absorbed dose ratio of 0.003 in healthy brain tissue compared to the tumor, with values of 4.8 × 10-4 for the skull and 2.6 × 10-5 for the thyroid. Notably, neutrons and photons can significantly increase energy transfer to distant organs, raising secondary cancer risk.
Conclusion: The findings presented in this article demonstrated that the involvement of secondary particles in the dose received by both the brain and other organs remains minimal, as the highest absorbed dose was predominantly localized within the tumor.

Keywords

Main Subjects


  1. Mitin T, Zietman AL. Promise and pitfalls of heavy-particle therapy. J Clin Oncol. 2014;32(26):2855.
  2. Tommasino F, Scifoni E, Durante M. New ions for therapy. Int J Particle Ther. 2015;2(3):428-38.
  3. Mihai M, Spunei M, Malaescu I. Comparison features for proton and heavy ion beams versus photon and electron beams. Rom Rep Phys. 2014;66(1):212-22.
  4. Jiang F, Song YT, Zheng JX, Zeng XH, Wang PY, Zhang JS, Zhang WQ. Energy loss of degrader in SC200 proton therapy facility. Nucl Sci Tech. 2019;30(1):1-8.
  5. Hong L, Goitein M, Bucciolini M, Comiskey R, Gottschalk B, Rosenthal S, et al. A pencil beam algorithm for proton dose calculations. Phys Med Biol. 1996;41(8):1305.
  6. Jia Y, Beltran C, Indelicato DJ, Flampouri S, Li Z, Merchant TE. Proton therapy dose distribution comparison between Monte Carlo and a treatment planning system for pediatric patients with ependymoma. Med Phys. 2012;39(8):4742-7.
  7. Larsson B. Proton and heavy ion therapy. In: Seventh International Conference on Cyclotrons and their Applications; 1975; Basel, Switzerland. Birkhäuser; 1975. p. 414-8.
  8. Enferadi M, Sarbazvatan S, Sadeghi M, Hong JH, Tung CJ, Chao TC, Wey SP. Nuclear reaction cross sections for proton therapy applications. J Radioanal Nucl Chem. 2017;314(2):1207-35.
  9. Mahdipour SA, Mowlavi AA. Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit. Med Dosim. 2016;41(2):118-25.
  10. Bagheri R, Moghaddam AK, Azadbakht B, Akbari MR, Shirmardi SP. Determination of water equivalent ratio for some dosimetric materials in proton therapy using MNCPX simulation tool. Nucl Sci Tech. 2019;30(2):31.
  11. Koto M, Demizu Y, Saitoh JI, Suefuji H, Tsuji H, Okimoto T, et al. Multicenter study of carbon-ion radiation therapy for mucosal melanoma of the head and neck: subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) study (1402 HN). Int J Radiat Oncol Biol Phys. 2017;97(5):1054-60.
  12. Schulz-Ertner D, Jäkel O, Schlegel W. Radiation therapy with charged particles. Semin Radiat Oncol. 2006;16(4):249-59.
  13. Amaldi U, Kraft G. Radiotherapy with beams of carbon ions. Rep Prog Phys. 2005;68(8):1861.
  14. Soltani-Nabipour J, Popovici MA, Strasser L, Cata-Danil GH. Bragg peak shape parameters as a tool for improving the I-value estimation. Rom Rep Phys. 2011;63(3):651-75.
  15. Mohamad O, Sishc BJ, Saha J, Pompos A, Rahimi A, Story MD, et al. Carbon ion radiotherapy: a review of clinical experiences and preclinical research, with an emphasis on DNA damage/repair. Cancers. 2017;9(6):66.
  16. Allen C, Borak TB, Tsujii H, Nickoloff JA. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy. Mutat Res Fundam Mol Mech Mutagen. 2011;711(1-2):150-7.
  17. Paganetti H, editor. Proton therapy physics. CRC Press; 2018.
  18. Verburg JM, Grassberger C, Dowdell S, Schuemann J, Seco J, Paganetti H. Automated Monte Carlo simulation of proton therapy treatment plans. Technol Cancer Res Treat. 2016;15(6):NP35-46.
  19. Allison J, Amako K, Apostolakis JE, Araujo HAAH, Dubois PA, Asai MAA, et al. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53(1):270-8.
  20. Kawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys. 2000;27(3):485-98.
  21. Hendricks JS, McKinney GW, Fensin ML, James MR, Johns RC, Durkee JW, et al. MCNPX 2.6.0 extensions. Los Alamos National Laboratory; 2008. Report No.: 73.
  22. Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P, et al. GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003;506(3):250-303.
  23. Ying CK, Kamil WA, Shuaib IL, Matsufuji N. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy. In: AIP Conference Proceedings; 2014 Feb; 1584(1):97-100. American Institute of Physics.
  24. Cirrone GAP, Cuttone G, Mazzaglia ES, Romano F, Sardina D, Agodi C, et al. Hadrontherapy: a Geant4-based tool for proton/ion-therapy studies. Prog Nucl Sci Technol. 2011;2:207-12.
  25. Kraft G. Tumor therapy with ion beams. Nucl Instrum Methods Phys Res A. 2000;454(1):1-10.
  26. Matsumoto S, Yonai S, Bolch WE. Monte Carlo study of out-of-field exposure in carbon-ion radiotherapy: organ doses in pediatric brain tumor treatment. Med Phys. 2019;46(12):5824-32.
  27. Demizu Y, Jin D, Sulaiman NS, Nagano F, Terashima K, Tokumaru S, et al. Particle therapy using protons or carbon ions for unresectable or incompletely resected bone and soft tissue sarcomas of the pelvis. Int J Radiat Oncol Biol Phys. 2017;98(2):367-74.
  28. Makishima H, Yasuda S, Isozaki Y, Kasuya G, Okada N, Miyazaki M, et al. Single fraction carbon ion radiotherapy for colorectal cancer liver metastasis: a dose escalation study. Cancer Sci. 2019;110(1):303-9.
  29. Ganjeh ZA, Eslami-Kalantari M, Mowlavi AA. Dosimetry calculations of involved and noninvolved organs in proton therapy of liver cancer: a simulation study. Nucl Sci Tech. 2019;30(12):1-7.
  30. Han EY, Bolch WE, Eckerman KF. Revisions to the ORNL series of adult and pediatric computational phantoms for use with the MIRD schema. Health Phys. 2006;90(4):337-56.
  31. White DR, Booz J, Griffith RV, et al. Report 44. J Int Comm Radiat Units Meas. 2016;OS23:NP-NP.
  32. Amako K, et al. Comparison of Geant4 hadronic models with experimental data in the energy range 0.1-12 GeV. Nucl Instrum Methods Phys Res B. 2008;266(3):408-21.
  33. Garcon MV, Watson JW. The Intranuclear Cascade Model for High-Energy Nuclear Collisions. Prog Part Nucl Phys. 1993;30(1):49-91.
  34. Sangwan N, Kumar A. An extensive study of depth dose distribution and projectile fragmentation cross-section for shielding materials using Geant4. Appl Radiat Isot. 2021;110068.
  35. Ahmadi Ganjeh Z, Eslami-Kalantari M, Mowlavi AA. The effect of phantom compositions on dose calculations in proton therapy of liver cancer. J Arak Univ Med Sci. 2020;22(6):274-87.
  36. International Commission on Radiation Units and Measurements (ICRU). Prescribing, Recording, and Reporting Proton-Beam Therapy. ICRU Report 78. 2007.
  37. Rasouli FS, Masoudi SF, Keshazare S, Jette D. Effect of elemental compositions on Monte Carlo dose calculations in proton therapy of eye tumors. Radiat Phys Chem. 2015;117:112-9.
  38. Suit H, DeLaney T, Goldberg S, Paganetti H, Clasie B, Gerweck L, et al. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol. 2010;95(1):3-22.