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Introduction: The quality of volumetric modulated arc therapy (VMAT) planning is highly subjective and 
varies due to differences in planner’s experience. This process is time-consuming and involves multiple 
iterations to achieve clinical goals. Recent advancements in artificial intelligence (AI) offers an objective 
approach to improve the efficiency of VMAT planning.  
Material and Methods: In this study, the backpropagation neural network with 5-fold cross-validation model 
was employed to train the extracted Radiomics and dosiomics features from organ contours DICOM RT 
structure and dose distribution DICOM RT dose using 178 VMAT technique brain cancer patients. The 
Radiomics and dosiomics features represent the organ shapes and dose distribution quantitatively to increase 
the prediction accuracy. The Mean Squared Error and paired t-test was used in model evaluation. The 
treatment planning quality parameters, homogeneity index (HI) and conformity index (CI), was evaluated 
from both predicted and clinical dose. 
Results: The paired t-test indicated no significant differences (p-value > 0.05) in organs at risk (OAR) and 
planning target volume (PTV). The p-value for the left optic nerve is the lowest among average dose (Dmean) 
and maximum dose (Dmax), respectively 0.1456 and 0.0662. The average HI was 0.084±0.036 (predicted) and 
0.089±0.073 (clinical), and CI was 0.938±0.107 (predicted) and 0.957±0.136 (clinical). 
Conclusion: The p-value for predicted parameters suggest that neural network-based dose prediction using 
Radiomics and dosiomics features produces results comparable to the manual treatment planning by medical 
physicists (overall testing dataset MSE = 0.0355). 
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Introduction 
Advanced techniques in radiotherapy, such as 

intensity modulated radiation therapy (IMRT) and 
volumetric modulated arc therapy (VMAT), offer more 
conformal dose distribution to minimize excessive 
radiation doses to surrounding healthy tissue [1-2]. 
This is achieved through the use of multi-leaf collimator 
(MLC) modulation and gantry rotation, particularly in 
the VMAT technique [3]. However, these advanced 
treatment techniques have several drawbacks in the 
planning process. The optimization process is time-
consuming and relies on an iterative trial and error 
process to achieve clinical goals for planning target 
volume (PTV) and organ at risk (OAR). This is because 
the set of descriptors, such as dose constraints set by 
planners are based on previous studies and are not 
specific to individual cases. Consequently, the quality of 
treatment planning is subjectively dependent on the 
experience of planners [4].   

In order to simplify and reduce the planning time 
also subjectivity of the planning process, several 
studies proposed the use of a knowledge-based 

planning (KBP) algorithm that has the ability to define 
the relationship between the dose received by OAR 
and PTV according to the geometric structure 
involved in radiation therapy planning. The model 
obtained was used to predict the best therapy 
planning parameter for new patients with similar 
characteristics, and then the plan evaluation was done 
using dose volume histogram (DVH) [5].  

Machine learning (ML) is also employed for data 
training in KBP to predict outcomes such as dose 
received by organs based on the organ features with 
specific prioritized planning parameter during 
evaluation to determine the quality of treatment 
planning [6-7]. Several parameters need to be 
considered to quantitatively evaluate the performance 
of treatment planning, including DVH, calculation of 
the conformity index (CI) which indicates how well 
the dose coverage received by the target volume, and 
calculation of the homogeneity index (HI) to analyze 
the uniformity of dose distribution within target 
volume [8-9].  
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Radiomics features can be utilized as an input for 
ML model and obtained by converting image data into 
high-dimensional spatial features so that the organ 
structures including the tumor lesion and healthy 
organ can be obtained quantitatively [10]. The 
Radiomics feature extraction process can be conduct 
by carrying out image acquisition and pre-processing, 
delineating tumors and organs, performing feature 
extraction and feature selection, and then constructing 
a model [11]. One of the results of radiation therapy 
planning is dose distribution which has no ability to 
provide accurate evaluation using visual assessment 
only, so a quantitative approach is needed to describe 
dose distribution based on the dose level received by a 
specific organ volume that is known as a dosiomics 
features. By combining radiological image and 
dosimetry characteristics, information regarding the 
quality of the therapy plan can be obtained more 
comprehensively and increase the accuracy of 
predictions [12]. 

Previous studies have demonstrated the 
implementation of machine learning for determining 
the treatment quality parameters in head and neck 
cancer, such as nasopharynx cancer, achieved results 
that are equally good with those manually planned 
treatment [13-15]. Additionally, several studies have 
explored the use of machine learning for dose 
prediction in gynecologic cancer, such as cervical 
cancer [16-17]. Comparisons between KBP using 
Rapid Plan software and machine learning approaches 
have also been investigated in head and neck as well 
as prostate cancers and showed on par ability of 
machine learning [18-19]. However, only few studies 
have explored the used of Radiomicss and dosiomicss 
features for dose distribution prediction using 
machine learning. Therefore, this study will analyze 
backpropagation neural network utility as a method 
to predict the dose distribution in VMAT brain cancer 
patients. The proposed backpropagation neural 
network algorithm addressed the variability and 
subjectivity of VMAT planning proses by automating 
dose prediction. By using Radiomics and dosiomics 
features as inputs, the model directly integrates 
patient-specific optimization parameters, reducing the 
need for repeated manual adjustments, and able to 
shortens the therapy planning process and minimizes 
the subjectivity influenced by the planner’s 
experience. However, scalability of integrating AI into 
VMAT planning clinically requires proper 
computational resources and data standardization to 
ensure consistency in treatment delivery. 

 

Materials and Methods 
Patients data collection 

Clinically administered VMAT radiation therapy 
treatment plans for 178 brain cancer patients at MRCCC 
Siloam Hospitals, Semanggi, spanning from 2011 to 
2024, were analyzed. The dataset comprised Digital 
Imaging and Communication in Medicine (DICOM) CT 

with imaging of specific organs acquired from CT scans 
of patients, DICOM RT structure with contour images 
delineated by radiation oncologist, and DICOM RT dose 
file containing information on the clinically 
administered and received doses by organ volume and 
can be visualized into dose volume histogram (DVH) 
for the treatment planning quality evaluation process. 
All treatment plans were created using the Varian 
Eclipse v13.6 treatment planning system (TPS) with the 
beam energy used at 6 MV to decrease low dose scatter 
in the body and a dose rate of 600 MU to compensate 
for the dose rate modulation for smooth gantry rotation 
movement and not burdening the linear accelerator 
(linac) motor. The overview of the data used in this 
study is shown in Table 1. 
 
Table 1. The treatment planning data used and available overview 
 

Total data Total 
fraction 

Dose/fraction 
(cGy) 

Total dose 
(cGy) 

178 5-30 200 1000-6000 

 
Twelve Radiomics shape features for specific OAR 

and the PTV were extracted from DICOM CT and 
DICOM structure files using 3D slicer software based 
on the PyRadiomicss library [20]. These features 
characterized the shape of organs based on delineation 
information. Dosiomics features from DICOM dose files 
were extracted by using the dose volume histogram 
module provided in 3D slicer software for the doses 
received by 2%, 98%, and 50% of the organ volumes 
(D2%, D98%, and D50%). Additionally, the volumetric 
data consisting of the target volume and the total target 
volume that received 95% of the prescribed dose (VPTV 
and V95%) were assessed. Maximum doses (Dmax), 
minimum doses (Dmin), and average doses (Dmean) for 
organs at risk were also extracted. The specific organs 
evaluated in this study included the left and right eyes, 
left and right optic nerves, left and right lenses, 
brainstem, and the cancer lesion (PTV) [21]. 3D slicer 
provides a comprehensive set of tools for segmentation, 
Radiomics feature extraction through PyRadiomicss 
library, and visualization. Additionally, 3D Slicer offers 
flexibility in handling a variety of medical imaging 
formats, particularly DICOM. 

Missing values in the dataset were handled using 
mean imputation, where any missing entries in a feature 
are replaced with the mean value of that feature. This 
approach ensures that the dataset remains complete and 
retains consistent across all features, preventing 
potential biases or errors during model training. By 
filling missing values with a representative statistic, 
mean imputation enabling the model to learn effectively 
from the full dataset and ensuring reliable and accurate 
predictions of neural network algorithm. Normalization 
of the dosiomics features was performed relative to the 
dose prescription value, ensuring the data ranged 
between 0 and 1. Furthermore, the normalization for 
volumetric data was carried out relative to the PTV 
volume. 
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Neural-network architecture building 
The dataset was split into 70% training-validation 

dataset and 30% testing dataset. During the training and 
validation process, 5-fold cross-validation was 
implemented to mitigate the limitations of the available 
data and prevent the model from overfitting, as shown in 
Figure 1. 

The Radiomics dataset was normalized using 
equation (1) to scale each feature within the 0 and 1 
range.  

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
                               (1) 

 
Where Xmin and Xmax are the minimum and maximum 

values of the features in each column. 
The feedforward propagation utilized random weight 

to determine the number of neurons in the input layer, 
hidden layer, and output layer. The activation function 
used was rectified linear unit (ReLU), chosen for its 
efficiency in capturing complex non-linear relationships 
while offering computational simplicity. ReLu activates 
neurons only when certain condition were met, such as 
the input is positive, a property that reduces the 
computational burden to a simple thresholding 
operation. This not only accelerates the model’s learning 
process but also makes it highly effective in handling 
the intricacies of non-linear data patterns. The loss 
function described by the mean squared error between 
predicted doses and clinical doses can be calculated 
using equation (2).  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1                               (2) 

 
Where n is the number of samples, yi is the predicted 

dose, and �̂�𝑖 is the actual dose.  
In the backpropagation process, the gradient of the 

loss with respect to the weights are then updated using 
the adaptive moment estimation (Adam) optimizer 
which adjusts the weights using equation (3). Adam 
optimizer algorithm modify the learning rate for each 
coordinate according to past gradient data, and 
autonomously select suitable learning rates to ensure 

rapid convergence during training with smaller number 
of tuning the hyper-parameters [22]. This procedure is 
carried out repeatedly over several epochs to reduce the 
loss and enhance the accuracy of the model. Adam was 
chosen as the optimizer for this study due to its ability to 
maintain a moving average of both the first moment and 
second moment, helping to avoid local minima and 
enhance performance. Additionally, Adam effectively 
handles sparse gradients in the relationship between 
Radiomics and dosiomics features, advantageous for 
dose prediction [23]. The process of hyper-parameter 
tuning followed a trial and error approach, balancing 
model complexity with computational efficiency to 
optimize VMAT dose prediction accuracy. Setting the 
number of epochs to 500 allowed the model ample time 
to learn and achieve convergence without overfitting. 
The choice of 100 hidden layer size provided the 
necessary complexity to capture intricate relationships 
between Radiomics and dosiomics features, ensuring the 
model can effectively represent non-linear patterns 
while maintaining computational manageability. This 
configuration enabled the model to generalize well 
while preventing excessive computational burden. The 
model then trained and validated across 5 folds, 
ensuring that each subset of the data is used for 
validation exactly once [24]. This helps in assessing the 
performance of model, where the total of 54 patients 
were used as an unseen testing dataset, to assess the 
model performance.  

𝜃𝑡+1 = 𝜃𝑡 − ղ ∙
�̂�𝑡

√�̂�𝑡+𝜀
                 (3) 

 

Where 𝜃𝑡 represents the weights at step t, ղ is the 
learning rate, �̂�𝑡 is the bias-corrected first moment 

estimate, �̂�𝑡 is the bias-corrected second moment 

estimate, and 𝜀 is a small constant to prevent division by 
zero. The training and validation loss curve was used to 
evaluate the backpropagation neural network model 
over epoch for fold 1, shown in Figure 2. 

 

 

 
 
Figure 1. Workflow from data collection to backpropagation neural network architecture building 
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Figure 2. Training and validation loss curve for fold 1 

 

Model evaluation 
Predicted maximum doses (Dmax) and average doses 

(Dmean) for OAR were compared with clinical doses data 
as a ground truth. The quality of planning for PTV was 
evaluated using the CI and the HI. According to the 
International Commission on Radiation Unit (ICRU) 
report No. 83, a CI value defined as equation (4) that is 
close to 1 indicates better coverage in target volume and 
a HI value defined as equation (5) that is close to 0 
indicates the better dose homogeneity for target volume 
(9).  

𝐶𝐼 =
𝑉95%

𝑉𝑃𝑇𝑉
                  (4) 

𝐻𝐼 =
𝐷2%−𝐷98%

𝐷50%
                           (5) 

 
Where,  
V95%: volume PTV received 95% prescribed dose 
VPTV: total volume of PTV 

Dx%: dose received by x% volume PTV 
The significance of the difference between predicted 

and clinical doses was assessed using a paired t-test to 
compare the means of two datasets. A p-value greater 
than 0.05 indicates that the mean difference between the 
two datasets is considered to be not statistically 
significant different to 0. 
 

Results 
Predicted dose of Organs at risk (OAR) 

The maximum dose (Dmax), average dose (Dmean), and 

minimum dose (Dmin) received by each organ at risk (OAR) 

observed was displayed in Table 2, Table 3 and Table 4. 

The study findings indicate that there is no substantial 

difference between the clinical dose and the predicted dose, 

as the p-value exceed 0.05. 

 

 
Table 2. Comparison of maximum dose (Dmax) for clinical and predicted. 

 

Organ structure 

Parameter (mean±SD) 

Mean Squared Error (MSE) p-value Dmax 

Clinical Predicted 

Left eye 0.376±0.212 0.387±0.190 0.0456 0.4219 

Right eye 0.384±0.217 0.393±0.243 0.0702 0.7952 

Left optic nerve 0.526±0.266 0.565±0.302 0.0839 0.0662* 

Right optic nerve 0.561±0.298 0.619±0.319 0.1281 0.2221 

Right lens 0.105±0.060 0.112±0.053 0.0053 0.5126 

Left lens 0.105±0.058 0.112±0.046 0.0050 0.4059 

Brainstem 0.856±0.189 0.892±0.099 0.0377 0.1766 

* Lowest p-value 

 

Table 3. Comparison of average dose (Dmean) for clinical and predicted. 
 

Organ structure 

Parameter (mean±SD) 
Mean Squared error (MSE) p-value 

Dmean 

Clinical Predicted   

Left eye 0.150±0.091 0.161±0.082 0.0093 0.4219 

Right eye 0.154±0.094 0.162±0.106 0.0163 0.6549 

Left optic nerve 0.382±0.232 0.431±0.252 0.0612 0.1456* 

Right optic nerve 0.406±0.251 0.430±0.288 0.0963 0.5767 

Right lens 0.088±0.050 0.089±0.047 0.0032 0.7968 

Left lens 0.088±0.049 0.088±0.040 0.0024 0.9542 

Brainstem 0.588±0.261 0.611±0.272 0.0772 0.5450 
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Table 4. Comparison of minimum dose (Dmin) for clinical and predicted. 
 

Organ structure 

Parameter (mean±SD) 
MSE p-value 

Dmin 

Clinical Predicted   

Left eye 0.065±0.039 0.061±0.033 0.0018 0.5578 

Right eye 0.065±0.038 0.060±0.041 0.0019 0.4428* 

Left optic nerve 0.226±0.150 0.241±0.157 0.0335 0.5499 

Right optic nerve 0.239±0.163 0.237±0.178 0.0477 0.9591 

Right lens 0.076±0.044 0.076±0.043 0.0030 0.9256 

Left lens 0.077±0.043 0.080±0.040 0.0026 0.6725 

Brainstem 0.333±0.314 0.312±0.325 0.1060 0.6342 

 

 
Figure 3. Comparison between clinical and predicted dosiomics features for planning target volume (PTV) 

 

 
 

Figure 4. Homogeneity index (HI) value comparison between clinical and predicted dosiomics features 

 



      Nafisa Imtiyaziffati Rasoma Muliarso, et al.                                                                                    BPNN for VMAT Dose Prediction in Brain Cancer 
    

Iran J Med Phys., Vol. 22, No. 2, March 2025                                                                               94 

 
Figure 5. Conformity index (CI) value comparison between clinical and predicted dosiomics features 

 

Predicted dose of Planning Target Volume (PTV) 

The statistical data distribution for both clinical and 

predicted dosiomics features of PTV was shown in Figure 

3. Based on the gathered data, there was no significant 

difference between the median values of clinical and 

predicted dosiomics features of PTV, as confirmed by the 

mean squared error (MSE) and the p-value detailed in 

Table 5. 

 

Treatment planning quality parameters 

Treatment planning quality parameter, homogeneity 

index (HI) and conformity index (CI), for clinical and 

predicted value in PTV was determined using equation (4) 

and (5). Subsequently, the outcomes were compared, as 

illustrated in Figure 4 and Figure 5. 
 

Discussion 
The 178 treatment planning data for brain cancer 

radiation therapy using volumetric modulated arc 
therapy (VMAT) consist of DICOM CT containing 
organ-specific image acquisition with a CT simulator at 
the beginning of the therapy planning process. It also 
encompasses DICOM structure containing delineation 
information performed by the radiation oncologist to 
differentiate between organ structures, and also DICOM 
dose which detailing the dose distribution received by 
the organ. From the overall DICOM file, by using 
pyRadiomics and dose volume histogram modules in 3D 
Slicer software, the Radiomics and dosiomics features 
can be extracted. The pre-processing is done to prepare 
the data for the training and validation process. The 
dosiomics features need to undergo normalization 
relative to dose prescription before carrying out the 
training process.  

For organs at risk (OAR), the maximum dose (Dmax) 
and average dose (Dmean) were evaluated during the 
treatment planning process to avoid excessive radiation 
dose exposure that could impair organ function. The 
minimum dose (Dmin) was used for recording and 

reporting purposes in compliance with ICRU report No. 
83 requirements.  

The combination of Radiomics and dosiomics 
features offers comprehensive insights into the dose 
distribution within specific organ volumes. These 
features enable the model to account for each patient’s 
unique anatomy and dosimetric requirements, enabling 
the prediction of dose to be customized to the individual 
clinical situation.  

The training and validation loss curve was used to 
evaluate the backpropagation neural network model 
over epoch for fold 1, as shown in Figure 2, where the 
loss curve interseceted around epoch 200. This 
intersection indicated that the model had reached a point 
where it performed similarly on both training and 
validation data, suggesting well generalization. After 
this point, the validation loss showed a slight upward 
trend while the training loss continues to decrease. This 
pattern suggests that the model was further refining its 
understanding of the training data while maintaining a 
balance with generalization of unseen data in training 
dataset. 

The backpropagation neural network model achieved 
a comparable predicted dose with hand-crafted clinical 
dose, as shown in Table 2, Table 3, and Table 4, no p-
value was lower than 0.05, indicating there was no 
significant difference between the predicted dosiomics 
features with the clinical dose. The p-value for the left 
optic nerve is the lowest among the average dose (Dmean) 
and maximum dose (Dmax). However, it remains above 
the typical significance level of 0.05, suggesting that, 
although the difference is relatively notable, it is not 
statistically significant, due to several factors, such as in 
clinical setting, many of the left optic nerve structure 
organs were overlapping with the PTV, resulting the 
data used for ML architecture not following a normal 
distribution. The Radiomics data used as input, 
particularly for the spherical feature of the left optic 
nerve, holds the smallest value among other organs at 
risk (OAR), 0.62166.  
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Table 5. Comparison of dosiomics features in PTV homogeneity 
 

Dosiomics features 
Parameter (mean±SD) 

MSE p-value 
Clinical Predicted 

D2% 1.041±0.015 1.039±0.034 0.0009 0.8288 

D50% 1.013±0.014 1.016±0.038 0.0012 0.5356* 

D98% 0.950±0.074 0.955±0.041 0.0066 0.6895 

 
The spherical features value for the right optic nerve, 

right eye, left eye, right lens, left lens, and brainstem 
are, respectively, 0.623247; 0.87266; 0.873851; 
0.815868; 0.812168; and 0.715863. The spherical 
Radiomics shape features reflects how closely an 
organ’s structure resembles a sphere, with values closer 
to zero indicating increased deviation from a spherical 
shape, implying greater complexity of the organ’s 
structure. For Dmin parameter, the lowest p-value was 
right eye. Dmin parameter represents the dose minimum 
received by volume organ. The slight difference of p-
value for Dmin parameter was due to the variability of the 
Dmin received by volume organ. In the treatment 
planning process, medical physicists set the optimization 
descriptor that includes dose constrain for OAR and 
PTV. The spatial relationship and proximity between the 
sensitive OAR and PTV will affect the ability of the 
treatment planning system (TPS) algorithm to achieve 
clinical goals, which aim to deliver the highest dose 
possible to PTV while sparing the dose received by 
OAR [25].  

The dosiomics featured observe for PTV consists of 
the dose received by 2% volumes (D2%), the dose 
received by 50% volumes (D50%), and the dose received 
by 98% volumes (D98%). Analysis of the PTV dosiomics 
features, depicted in Figure 3, suggested that the median 
between clinical and predicted doses are closely aligned. 
The lower and upper quartiles that are indicated by the 
upper and lower border of the box represent the 
coordinates which half of the data lies. An outlier for 
clinical data as noted in the testing data, stemming from 
the use of the only sub-optimal VMAT brain cancer 
treatment planning data available in the database of the 
hospital, where the 95% dose prescription only covered 
around 89% PTV where the supposed coverage is 98% 
PTV, to verify the capability of the model in providing 
an objective overview for dose distribution. These 
findings for the p-value from the paired t-test and MSE 
parameters, demonstrate that the difference between 
clinical and predicted doses is not significant, as shown 
in Table 5 and it also show that the sub-optimal 
Radiomics information (patient 13 in Figure 4 and 5) 
can effectively predict the optimal dosiomics features of 
testing data with favorable results and improved dose 
uniformity and coverage in PTV that is represented by 
the treatment planning quality parameters, HI and CI, as 
shown in Figure 4 and Figure 5. The noted outliers in 
predicted dosiomics features of PTV were due to the 
large anatomical variance for PTV Radiomics features 
with different locations and tumor sizes [26].  The 
average for predicted HI value is 0.084±0.036 and 
0.089±0.073 for the clinical HI value (p-value = 

0.6222). The average predicted CI value achieved is 
0.938±0.107 compared to 0.957±0.136 for clinical CI 
value (p-value = 0.4164), where according to ICRU 
report No. 83, a HI values leaned towards 0 has better 
uniformity of dose distribution within the PTV and a CI 
values closer to 1 indicates better dose coverage for the 
PTV. The acceptable dose coverage in radiation therapy 
treatment planning process ranges from 95% and 107% 
with 98% of the PTV required to be covered by a 
minimum 95% of the prescribed dose. A high 
uniformity in dose distribution enhance effective dose 
tumour control to minimize the risk of recurrence by 
ensuring the entire PTV receives an adequate radiation 
dose [27]. The MSE value between the clinical and 
predicted dosiomics features in overall testing dataset 
was 0.0355, where small MSE implies better 
performance in backpropagation neural network model.  

The observed discrepancy between the clinical and 
predicted dose distributions, which reflects lower model 
performance, may stem from the close spatial 
relationship between the PTV and OARs. The 
limitations of the available dataset’s size and diversity, 
as a small dataset might not capture the full spectrum of 
clinical scenarios, will also decrease model performance 
to predict dose distribution. Additionally, potential 
biases may arise from the limitation of demographic 
variability, as this study was conducted at a single 
hospital. To further improve generalizability, future 
studies will incorporate larger, multicenter datasets to 
overcome possible biases that occur. 

 

Conclusion 
In this study, we utilized a backpropagation neural 

network model to predict the dose received by OAR and 
PTV based on the delineation information from DICOM 
RT structure and dose distribution data from DICOM 
RT dose. The results demonstrate the predicted dose 
obtained are comparable with hand-crafted clinical dose 
where the Mean Squared Error (MSE) for overall testing 
dataset was 0.0355. This show the potential used of 
backpropagation neural network model for dose 
prediction in radiotherapy. For further study, in order to 
improve model performance, the overlap or proximity 
between PTV and OARs need to be considered by 
incorporating 3D spatial and geometric information that 
indicates the proximity between the PTV and OARs. 
Additionally, increasing the size of training dataset can 
provide the model with more diverse examples, 
allowing it to better generalize and handle a wider 
variety of cases during the training process. 
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