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Introduction: Protoporphyrin IX (PpIX) is a critical photosensitizer in photodynamic therapy (PDT) with 
applications in oncology and dermatology. Despite its clinical importance, comprehensive understanding of 
its pharmacokinetic profile remains limited. This study aimed to characterize the absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) properties of PpIX using computational approaches. 
Material and Methods: The molecular structure of PpIX was analyzed using two complementary 
computational platforms, Deep-pk and pkCSM, which utilize machine learning and deep learning algorithms 
trained on experimental pharmacokinetic data to predict ADMET parameters. Physicochemical properties, 
absorption, distribution, metabolism, excretion, and toxicity profiles were evaluated and compared between 
the platforms. 
Results: PpIX exhibited high lipophilicity (LogP>7) with moderate hydrogen bonding capacity. Both 
platforms predicted good intestinal absorption (63.5-98.2%) but poor oral bioavailability, explaining the 
preference for topical administration in clinical settings. PpIX showed moderate tissue distribution (VDss 
0.63-0.77 log L/kg) and was not predicted to be a substrate for major CYP450 enzymes, suggesting 
metabolic stability. However, strong inhibition of CYP1A2 (probability 0.97) and transporters (OATP1B1, 
BCRP) indicated potential drug interactions. The predicted short half-life (<3 hours) aligned with clinical 
observations. Toxicity analysis revealed non-mutagenicity and cardiac safety, but conflicting hepatotoxicity 
predictions and potential respiratory toxicity warrant clinical monitoring. 
Conclusion: Computational analysis of PpIX confirmed pharmacokinetic properties supporting its clinical 
use but raised concerns about drug interactions and organ toxicity. These results provide a basis for 
optimizing PDT protocols and improving formulations. Differences between prediction methods highlight 
the need for experimental validation of key parameters to ensure clinical safety and effectiveness. 
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Introduction 
Photodynamic therapy (PDT) represents a 

promising frontier in minimally invasive cancer 
treatment and antimicrobial applications, hinging 
critically on the pharmacokinetic and 
pharmacodynamic properties of photosensitizers [1]. 
Among these, Protoporphyrin IX (PpIX) has emerged 
as a cornerstone molecule in clinical PDT applications 
due to its unique photochemical properties and 
selective accumulation in target tissues [2]. Despite its 
widespread clinical utilization, comprehensive 
characterization of PpIX’s complex pharmacokinetic 
profile remains challenging using traditional 
experimental approaches alone [3]. 

The advent of computational tools has 
revolutionized our ability to predict and analyze 
pharmacokinetic parameters with unprecedented 
precision and efficiency. This study leverages two 
cutting-edge computational platforms (pkCSM and 

Deep-pk) to elucidate the intricate pharmacokinetic 
behavior of PpIX as a vital photosensitizer in PDT 
applications [4, 5]. While pkCSM employs graph-based 
signatures to predict ADMET (Absorption, 
Distribution, Metabolism, Excretion, and Toxicity) 
properties, Deep-pk utilizes deep learning algorithms 
to model complex pharmacokinetic relationships from 
molecular structures [6, 7]. 

By integrating these complementary 
computational approaches, we aim to provide novel 
insights into PpIX’s absorption kinetics, tissue 
distribution patterns, metabolic pathways, and 
clearance mechanisms. This comprehensive 
pharmacokinetic profiling will address critical 
knowledge gaps regarding PpIX behavior in biological 
systems, potentially resolving persistent challenges in 
PDT applications such as variable photosensitizer 
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accumulation, unpredictable therapeutic windows, 
and differential tissue responses [8]. 

The findings from this computational investigation 
hold significant implications for optimizing PDT 
protocols, enhancing treatment efficacy, minimizing 
adverse effects, and potentially expanding the 
therapeutic applications of PpIX-mediated 
photodynamic interventions. Furthermore, this study 
establishes a methodological framework for the 
computational evaluation of next-generation 
photosensitizers, potentially accelerating their 
development and clinical translation. 

 

Materials and Methods 
Computational Tools and Resources 

The present study employed a dual computational 
approach utilizing two advanced platforms for 
pharmacokinetic modeling and prediction. The 
integration of these complementary methodologies 
provided comprehensive insights into the 
pharmacokinetic profile of Protoporphyrin IX (PpIX) as 
a photosensitizer in photodynamic therapy applications. 

The pkCSM (predicting small-molecule 
pharmacokinetic properties using graph-based 
signatures) web server 
(http://biosig.unimelb.edu.au/pkCSM/) was accessed 
between January and March 2025. This platform 
implements graph-based signatures to generate 
predictive models of pharmacokinetic properties based 
on molecular structure. pkCSM has been extensively 
validated against diverse chemical datasets and 
demonstrates high accuracy in predicting ADMET 
parameters for small molecules and drug-like 
compounds [9]. In parallel, we utilized the Deep-pk 
platform (version 2.3), a deep learning-based 
computational tool that employs convolutional and 
recurrent neural networks to model complex 
pharmacokinetic relationships. Deep-pk was selected for 
its demonstrated ability to capture non-linear 
relationships between molecular structures and their 
pharmacokinetic behaviors, particularly for porphyrin-
like compounds [10].  

 

Molecular Structure Preparation and Optimization 
The three-dimensional structure of Protoporphyrin 

IX (PubChem CID: 4971, molecular formula 
C34H34N4O4, molecular weight 562.7 g/mol) was 
retrieved from the PubChem database in SDF format 
[11]. To ensure optimal computational analysis, the 
molecular structure underwent rigorous preparation and 
optimization procedures. 

Initial structure optimization was performed using 
Schrödinger’s LigPrep module (Schrödinger Release 
2024-1, Schrödinger, LLC, New York, NY) [12]. The 
optimized structures were converted to appropriate file 
formats (.mol2, .sdf, and SMILES) using Open Babel 
(version 3.1.1) to ensure compatibility with both 
computational platforms. 

 

Comprehensive Pharmacokinetic Parameter 

Prediction 

Absorption Parameter Analysis 
A detailed absorption profile for PpIX was created 

using two computational platforms. Human intestinal 
absorption (HIA) was predicted with pkCSM’s 
regression model, providing percentage absorption 
based on physicochemical properties [6]. Caco-2 cell 
permeability was assessed as a measure of intestinal 
permeability, expressed as log Papp. Additionally, P-
glycoprotein substrate and inhibitor status were 
evaluated to understand potential active efflux 
mechanisms affecting PpIX absorption [13]. 

Parallel analysis with Deep-pk’s absorption module 
provided complementary data on absorption rate 
constants (ka) under various physiological conditions, 
utilizing a neural network architecture that incorporated 
relevant molecular descriptors. 

 

Distribution Analysis and Tissue Partitioning 
The distribution profile of PpIX was characterized 

using computational models. The steady-state volume of 
distribution (Vdss) was predicted via pkCSM’s 
regression algorithm (log L/kg). Tissue-specific 
partitioning was evaluated using Deep-pk’s PBPK 
model, estimating coefficients for eight key tissues 
(plasma, liver, kidney, brain, skin, muscle, adipose, and 
tumor) while accounting for protein binding, lipid 
content, and inter-compartmental pH gradients [10, 14, 
15]. 

Plasma protein binding was analyzed by both 
platforms: pkCSM predicted percentage binding from 
structural descriptors, while Deep-pk quantified affinity 
constants (Ka) for albumin, α1-acid glycoprotein, and 
lipoproteins. BBB permeability was assessed via log BB 
(pkCSM) and log PS (Deep-pk), the latter incorporating 
active transport dynamics [16, 17]. 

 

Metabolism Prediction and Enzymatic Interactions 
PpIX metabolism was evaluated for Phase I/II 

biotransformation pathways. CYP450 substrate 
specificity (1A2, 2C9, 2C19, 2D6, 3A4) was assessed 
via pkCSM, with probability scores >0.5 indicating 
likely substrates. Potential CYP450 inhibition (predicted 
IC50) identified drug-drug interaction risks. Deep-pk 
predicted metabolic sites (oxidation, reduction, 
hydrolysis, conjugation) and derived half-life values in 
hepatic systems. Ferrochelatase-mediated conversion to 
heme was modeled, accounting for differential tumor vs. 
normal tissue expression to explain PpIX’s neoplastic 
accumulation. 

 

Excretion Analysis and Clearance Mechanisms 
The excretion kinetics of PpIX were evaluated by 

predicting key clearance parameters. Total clearance 
rates (ml/min/kg) were computed using two independent 
platforms. Deep-pk offered enhanced resolution, 
differentiating hepatic, renal, and extrahepatic 
elimination pathways. Its model integrated physiological 
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variables (e.g., bile flow dynamics, enterohepatic 
recirculation) to refine PpIX excretion predictions. 

Given porphyrins’ unique pharmacokinetics, the 
involvement of efflux transporters (ABCG2/BCRP, 
ABCC2/MRP2) was assessed. Substrate potential was 
inferred via structural alignment with known ligands and 
identification of transporter-binding motifs. 

 

Descriptive analysis 
The pharmacodynamic and pharmacokinetic 

characteristics of Protoporphyrin IX were comparatively 
analyzed using descriptive analytical methods across the 
pkCSM and Deep-pk online platforms. Given the 
intricate and heterogeneous nature of the data, which 
encompasses both qualitative and quantitative 
parameters, traditional statistical testing was deemed 
unsuitable. Instead, a comprehensive descriptive 
comparative approach was employed to systematically 
evaluate and interpret the complex interactions and 
variations observed in the datasets. This methodology 
allowed for a nuanced examination of the drug’s 
properties, ensuring that the subtle differences and 
interconnected characteristics were thoroughly explored 
without imposing restrictive statistical frameworks. By 
focusing on descriptive analysis, we were able to 
provide a more holistic and flexible interpretation of the 

pharmacokinetic and pharmacodynamic profiles derived 
from these two distinct computational platforms. 
 

Results 
Molecular Properties and PK Profile of PpIX 

The comprehensive computational analysis of 

Protoporphyrin IX (PpIX) using both Deep-pk and pkCSM 

platforms revealed detailed insights into its 

pharmacokinetic behavior, which are essential for 

understanding its efficacy as a photosensitizer in 

photodynamic therapy. The molecular structure of PpIX 

(PubChem CID: 4971) exhibits key physicochemical 

properties that influence its pharmacokinetic profile, as 

presented in Table 1. 
 

Absorption Parameters 

The absorption characteristics of PpIX were evaluated 

through multiple parameters to assess its potential for 

various administration routes. Table 2 summarizes the 

absorption profile predicted by both computational 

platforms. 

The absorption profile of PpIX reveals significant 

challenges for oral administration. While both platforms 

predict moderate to high intestinal absorption (63.5-

98.2%), Deep-pk specifically indicates poor oral 

bioavailability at both ≥20% and ≥50% thresholds.
 

Table 1. Physicochemical Properties of Protoporphyrin IX 
 

Property Value Platform 

Molecular Weight 562.67 g/mol pkCSM / Deep-pk 

LogP 7.42 / 7.23 pkCSM / Deep-pk 

Rotatable Bonds 8 pkCSM / Deep-pk 

Hydrogen Bond Acceptors 4 pkCSM / Deep-pk 

Hydrogen Bond Donors 4 pkCSM / Deep-pk 

Surface Area 242.70 Å² pkCSM / Deep-pk 

Melting Point 306.14°C Deep-pk 

Boiling Point 554.06°C Deep-pk 

pKa (Acid) 8.04 Deep-pk 

pKa (Basic) 7.15 Deep-pk 

 
Table 2. Absorption Parameters of Protoporphyrin IX 
 

Parameter Deep-pk pkCSM Interpretation 

Caco-2 Permeability 
-5.49 log Papp (Very 

low) 

0.169 log Papp 

(Moderate) 

Major conflict: Deep-pk suggests negligible intestinal absorption (likely due to 

modeling active efflux or tight junctions), while pkCSM predicts moderate 
passive diffusion. Experimental validation needed. 

Human Intestinal 

Absorption (HIA) 

98.2% (High 

confidence) 
63.52% 

Deep-pk’s high prediction may account for transporter-mediated uptake, 

whereas pkCSM’s lower value aligns with moderate passive permeability. 

Oral Bioavailability  

Non-bioavailable 

(Medium 

confidence) 

- 
Both platforms agree on poor bioavailability, likely due to low solubility/first-
pass metabolism. 

P-glycoprotein 

Substrate 

Non-substrate (Low 

confidence) 
Substrate 

Critical discrepancy: If PpIX is a P-gp substrate (per pkCSM), it may face efflux 
in the gut/liver, reducing bioavailability. Deep-pk’s low-confidence prediction 

warrants caution. 

P-glycoprotein  
Inhibitor 

Non-inhibitor (Both 
I/II) 

Non-inhibitor Consensus: PpIX unlikely to cause P-gp-mediated drug-drug interactions. 

Skin Permeability 
3.10 log Kp 

(High) 

2.73 log Kp 

(High) 

Both agree on high skin penetration, supporting topical PpIX use (e.g., in 

photodynamic therapy). 

MDCK Permeability -5.43 log Papp - 
Corroborates Deep-pk’s Caco-2 prediction, suggesting poor transcellular 
transport. 
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The discrepancy in Caco-2 permeability predictions 

between platforms (-5.49 vs. 0.169 log Papp) introduces 

uncertainty regarding epithelial permeability, though the 

negative MDCK permeability value from Deep-pk 

supports limited transcellular transport. Both platforms 

consistently predict high skin permeability (log Kp >2.7), 

which aligns with the successful clinical application of 

topical 5-aminolevulinic acid (5-ALA) for dermatological 

photodynamic therapy, where 5-ALA serves as a prodrug 

that is metabolically converted to PpIX within target 

tissues. 

 

Distribution Parameters 

The distribution characteristics of PpIX were assessed 

to understand its tissue penetration and protein binding 

properties, as shown in Table 3. 

The distribution profile indicates that PpIX has a 

moderate volume of distribution (0.63-0.77 log L/kg), 

suggesting distribution beyond plasma into tissues. Both 

platforms predict significant protein binding, though with 

quantitative differences (1.62% vs. 11.7% unbound 

fraction). This high protein binding may limit free drug 

availability but could also provide a reservoir effect, 

prolonging circulation time. The blood-brain barrier 

penetration predictions are qualitatively consistent but 

differ in magnitude, with both platforms suggesting some 

degree of CNS distribution. This property could be relevant 

for potential applications in brain tumors, though the 

negative CNS permeability values indicate limited 

penetration. 

 

Metabolism Parameters 

The metabolism profile of PpIX was characterized 

through predictions of enzyme substrate specificity and 

inhibition potential, as presented in Table 4.  

The metabolism results indicate that PpIX is not 

identified as a substrate for CYP1A2, CYP2C9, CYP2C19, 

CYP2D6, or CYP3A4, and it is generally unlikely to be 

metabolized by these enzymes with high confidence. 

However, PpIX is identified as an inhibitor of CYP1A2, 

with predictions suggesting potential interactions with this 

enzyme. Conflicting predictions exist for the inhibition of 

CYP2C9 and CYP2C19. For CYP2D6 and CYP3A4, 

PpIX is recognized as a non-inhibitor. Additionally, PpIX 

may act as an inhibitor for BCRP, as well as OATP1B1 

and OATP1B3, which could lead to drug interactions 

related to hepatic uptake and efflux. 

 

Excretion Parameters 

The excretion characteristics of PpIX were assessed to 

understand its elimination pathways and residence time in 

the body, as summarized in Table 5. 
 

Table 3. Distribution Parameters of Protoporphyrin IX 
 

Parameter Deep-pk pkCSM Interpretation 

Volume of Distribution (VDss) 0.77 log L/kg 0.632 log L/kg Moderate tissue distribution 

Fraction Unbound (Human) 1.62% 11.7% Moderate to high protein binding 

Plasma Protein Binding 40.59% - Moderate protein binding 

Blood-Brain Barrier Penetration Penetrable (High confidence) Penetrable (log BB 1.648) BBB penetration likely 

CNS Permeability -2.19 log BB -2.687 log PS Limited CNS permeability 

 
Table 4. Metabolism Parameters of Protoporphyrin IX 
 

Parameter Deep-pk pkCSM Interpretation 

CYP1A2 Substrate Non-substrate (High confidence) - Not metabolized by CYP1A2 

CYP2C9 Substrate Non-substrate (High confidence) - Not metabolized by CYP2C9 

CYP2C19 Substrate Non-substrate (Medium confidence) - Likely not metabolized by CYP2C19 

CYP2D6 Substrate Non-substrate (High confidence) Non-substrate Not metabolized by CYP2D6 

CYP3A4 Substrate Non-substrate (High confidence) Non-substrate Not metabolized by CYP3A4 

CYP1A2 Inhibitor Inhibitor (High confidence) Inhibitor Consistent prediction of CYP1A2 inhibition 

CYP2C9 Inhibitor Non-inhibitor (High confidence) Inhibitor Conflicting predictions 

CYP2C19 Inhibitor Inhibitor (Medium confidence) Non-inhibitor Conflicting predictions 

CYP2D6 Inhibitor Non-inhibitor (Low confidence) Non-inhibitor Consistent prediction of non-inhibition 

CYP3A4 Inhibitor Non-inhibitor (High confidence) Non-inhibitor Consistent prediction of non-inhibition 

BCRP Inhibitor Inhibitor (Medium confidence) - Potential interaction with BCRP transporter 

OATP1B1 Inhibitor Inhibitor (High confidence) - Likely interaction with hepatic uptake transporter 

OATP1B3 Inhibitor Inhibitor (Low confidence) - Possible interaction with hepatic uptake transporter 

Table 5. Excretion Parameters of Protoporphyrin IX 
 

Parameter Deep-pk pkCSM Interpretation 

Total Clearance 4.46 ml/min/kg 0.552 log ml/min/kg (3.57 ml/min/kg) Moderate clearance rate 

Half-Life <3 hours (High confidence) - Short half-life 

OCT2 Substrate - Non-substrate Not affected by renal OCT2 transport 

OCT2 Inhibitor Non-inhibitor (High confidence) - No inhibition of renal cation transport 
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Table 6. Toxicity Parameters of Protoporphyrin IX 
 

Parameter Deep-pk pkCSM Interpretation 

AMES Mutagenesis Safe (High confidence) Non-toxic Consistent prediction of no mutagenicity 

Maximum Tolerated 
Dose 

-0.89 (log mg/kg) 0.654 (log mg/kg/day) Moderate to low tolerated dose 

hERG I Inhibition Safe (High confidence) Non-inhibitor Consistent prediction of cardiac safety 

hERG II Inhibition - Non-inhibitor No cardiac toxicity predicted 

Hepatotoxicity 
Toxic (DILI I: High confidence, DILI II: Low 

confidence) 
Non-toxic Conflicting hepatotoxicity predictions 

Skin Sensitization Safe (Low confidence) Non-sensitizer 
Consistent prediction of low skin 

sensitization 

Rat Acute Toxicity 
(LD50) 

2.64 mol/kg 2.472 (mol/kg) 
Consistent prediction of moderate acute 
toxicity 

Rat Chronic Toxicity 4.21 log mg/kg 
1.827 (log 

mg/kg_bw/day) 
Moderate chronic toxicity 

Carcinogenesis Safe (High confidence) - No carcinogenic potential predicted 

Respiratory Toxicity Toxic (High confidence) - Potential respiratory concerns 

T. Pyriformis Toxicity -12047.48 0.285 (log μg/L) Potential aquatic toxicity 

Minnow Toxicity 30.31 2.285( log mM) Mixed ecological toxicity profile 

 

The excretion data indicates that PpIX has a moderate 

clearance rate (3.57-4.46 ml/min/kg) and short half-life (<3 

hours), which aligns with clinical observations in 

photodynamic therapy where the photosensitivity window 

is relatively brief compared to other photosensitizers. The 

clearance values from both platforms are reasonably 

consistent. PpIX is not predicted to be a substrate or 

inhibitor of OCT2, suggesting that renal active secretion 

via this transporter is not a significant elimination pathway. 

The short half-life is advantageous for PDT applications as 

it reduces the duration of post-treatment photosensitivity, a 

common side effect of photodynamic therapy. 

 

Toxicity Parameters 

The toxicity profile of PpIX was comprehensively 

evaluated to assess potential adverse effects and safety 

concerns, as presented in Table 6. 

The toxicity profile of PpIX presents a mixed picture. 

Both platforms consistently predict that PpIX is non-

mutagenic (AMES negative) and lacks cardiotoxicity 

(hERG negative), suggesting safety in these critical aspects. 

However, there is significant discrepancy in hepatotoxicity 

predictions, with Deep-pk indicating potential for drug-

induced liver injury (high confidence for DILI I) while 

pkCSM predicts no hepatotoxicity. Given the role of the 

liver in porphyrin metabolism and the known association 

between porphyrias and liver dysfunction, the Deep-pk 

prediction warrants consideration in clinical applications. 

The respiratory toxicity prediction from Deep-pk (high 

confidence) suggests potential pulmonary concerns that 

should be monitored, particularly in systemic applications. 

Both platforms predict moderate acute toxicity in rats with 

similar LD50 values (2.47-2.64 mol/kg), indicating 

consistency in this aspect of the toxicity profile. 
 

Discussion 
   The pharmacokinetic and pharmacodynamic 

behaviors of Protoporphyrin IX (PpIX) as a 
photosensitizer in photodynamic therapy (PDT) are 
crucial for optimizing treatment efficacy. In this 

comparison, PpIX’s absorption, distribution, 
metabolism, and excretion profiles were analyzed using 
two software tools, PKCSM and Deep-PK, which 
provided insights into its potential interactions and 
therapeutic window. The integration of these 
computational platforms enhances our understanding of 
PpIX’s role in PDT and aids in the design of more 
effective therapeutic strategies. 

   Deep-pk predicts 98.2% human intestinal 
absorption (HIA) with high confidence, suggesting 
efficient uptake, possibly due to transporter-mediated 
processes. However, its Caco-2 permeability (-5.49 log 
Papp) indicates extremely low passive diffusion, 
conflicting with pkCSM’s moderate prediction (0.169 
log Papp). This discrepancy may arise from differences 
in how the models account for active transport or 
membrane interactions. Deep-pk’s MDCK permeability 
(-5.43 log Papp) supports its low transcellular 
permeability prediction, whereas pkCSM’s higher Caco-
2 value aligns better with its 63.52% HIA estimate. 

Both models agree that PpIX has low oral 
bioavailability, but Deep-pk explicitly labels it as “non-
bioavailable,” likely due to poor solubility or first-pass 
metabolism. The P-glycoprotein (P-gp) substrate 
prediction is highly conflicting. pkCSM classifies PpIX 
as a substrate, implying potential efflux in the gut/liver, 
while Deep-pk rejects this (albeit with low confidence). 
If pkCSM is correct, co-administering P-gp inhibitors 
(e.g., cyclosporine) could improve PpIX absorption—a 
hypothesis requiring experimental validation. 

   Both models predict high skin permeability (Deep-
pk: 3.10 log Kp, pkCSM: 2.73 log Kp), supporting 
PpIX’s use in topical therapies like photodynamic 
treatment for skin lesions. This consensus strengthens 
confidence in its dermal delivery potential. 

   Deep-pk predicts a VDss of 0.77 log L/kg (~5.9 
L/kg linear), suggesting moderate-to-high tissue 
distribution, while pkCSM estimates 0.632 log L/kg 
(~4.3 L/kg linear), indicating slightly less extensive 
tissue penetration. The difference could stem from how 
each model accounts for PpIX’s lipophilicity or tissue-
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binding affinity. Deep-pk’s higher value aligns better 
with PpIX’s known accumulation in tissues like the liver 
and skin, which is relevant for photodynamic therapy 
applications.  

   Deep-pk reports only 1.62% of PpIX as unbound 
(implying 98.38% protein-bound), whereas pkCSM 
predicts 11.7% unbound (88.3% bound). This stark 
discrepancy (10-fold difference in free fraction) is 
critical for dosing and efficacy. Deep-pk’s additional 
note of “40.59% plasma protein binding” contradicts its 
own fraction unbound value, suggesting a possible error 
in labeling or units. Experimental validation (e.g., 
equilibrium dialysis) is essential to resolve this conflict. 

   Both models agree PpIX can cross the BBB. Deep-
pk labels it “penetrable” with high confidence, and 
pkCSM’s log BB of 1.648 (brain/plasma ratio >1) 
suggests active uptake or weak efflux. This supports 
potential use in brain-targeted therapies (e.g., 
glioblastoma PDT) but raises neurotoxicity concerns. 
However, BBB penetrability does not guarantee 
effective CNS distribution. Deep-pk’s log BB of -2.19 
(~0.006 brain/plasma ratio) and pkCSM’s log PS of -
2.687 both indicate very low passive CNS permeability. 
This contrasts with their BBB penetrability predictions, 
implying that while PpIX may enter the brain, it likely 
fails to diffuse into deeper parenchyma. Transporter-
mediated uptake (e.g., via OATP) might explain this 
divergence, warranting further study. 

   About the results of metabolism, Deep-pk 
demonstrates superior reliability for CYP substrate 
predictions (consistently high-confidence non-substrate 
calls for all CYPs, aligning with pkCSM’s limited data) 
but reveals critical discrepancies in inhibition profiles. 
While both agree on CYP1A2 inhibition (clinically 
significant for drug interactions), Deep-pk’s high-
confidence non-inhibition calls for CYP2C9/CYP3A4 
conflict with pkCSM’s CYP2C9 inhibition prediction, 
suggesting Deep-pk may prioritize specificity (reducing 
false positives). However, pkCSM’s lack of transporter 
data (e.g., OATP1B1/BCRP) limits its utility for hepatic 
uptake/efflux interactions—a domain where Deep-pk 
excels with detailed, confidence-ranked transporter 
inhibition predictions. For holistic ADME profiling, 
Deep-pk is preferable due to broader coverage 
(transporters, multi-enzyme consensus) and 
transparency in confidence metrics, though experimental 
validation (e.g., CYP2C9 IC50 assays) remains essential 
for conflicting results.  

   The comprehensive analysis of excretion 
parameters reveals a nuanced pharmacokinetic profile 
characterized by moderate clearance (4.46 mL/min/kg 
by Deep-pk, ~3.57 mL/min/kg by pkCSM) and a short 
half-life (<3 hours), suggesting rapid systemic 
elimination predominantly through hepatic metabolism. 
Both platforms consistently indicate the compound is 
not an OCT2 substrate or inhibitor, minimizing potential 
renal interaction risks and drug-drug interaction 
complexities. Deep-pk demonstrates superior predictive 
capabilities with high-confidence quantitative 
predictions, providing more granular insights into 

excretion mechanisms compared to pkCSM’s limited 
data. The convergent predictions support a favorable 
pharmacokinetic profile with efficient elimination, 
reduced renal involvement, and minimal transporter-
mediated interactions, though confirmatory 
experimental validation remains crucial for translating 
these computational predictions into clinical 
understanding.  

The in silico toxicity assessment, employing Deep-
pk and pkCSM, revealed a complex safety profile 
requiring rigorous validation. While both models 
consistently predicted a low risk of mutagenicity, 
carcinogenicity, and cardiac toxicity, significant 
discordance emerged regarding hepatotoxicity. Deep-pk 
predicted potential hepatotoxicity with high confidence, 
contrasting with pkCSM’s non-toxic assessment, 
necessitating focused experimental investigation. 
Furthermore, both models suggested moderate acute and 
chronic toxicity, alongside a narrow therapeutic window 
indicated by Maximum Tolerated Dose predictions. The 
identification of potential respiratory toxicity and 
ecological concerns further underscores the need for 
comprehensive pre-clinical testing. The contrasting 
predictions between the two models emphasize the 
importance of multi-faceted computational approaches 
but also highlight the limitations of solely relying on in 
silico methods. These findings, therefore, necessitate a 
cautious interpretation, prioritizing experimental 
validation, particularly in the areas of hepatotoxicity, 
respiratory effects, and long-term systemic impacts, to 
refine the compound’s safety profile and inform 
subsequent development decisions. 

 

Perspective 
The computational analysis of Protoporphyrin IX 

(PpIX) using PKCSM and Deep-pk reveals a complex 
pharmacokinetic profile with significant methodological 
discrepancies, highlighting both promising therapeutic 
potential and critical validation needs. While the models 
consistently suggest high skin permeability, potential 
brain-targeted applications, and low mutagenicity risks, 
they diverge substantially in key parameters like 
intestinal absorption, protein binding, and 
hepatotoxicity. The most striking findings include Deep-
pk’s 98.2% human intestinal absorption prediction, 
conflicting BBB penetration mechanisms, and 
contrasting hepatotoxicity assessments. These 
computational insights underscore the importance of a 
strategic, multi-tiered experimental validation approach, 
focusing on resolving model disagreements, 
investigating transporter-mediated interactions, and 
comprehensively assessing potential toxicity risks. 
Ultimately, the study demonstrates that computational 
models should be viewed as sophisticated hypothesis 
generators rather than definitive predictors, emphasizing 
the irreplaceable role of experimental validation in drug 
development, particularly for complex photosensitizers 
like PpIX in photodynamic therapy. 
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Conclusion 
This study provides a valuable computational 

assessment of Protoporphyrin IX (PpIX) 
pharmacokinetics and pharmacodynamics, leveraging 
the strengths of both PKCSM and Deep-pk software to 
predict absorption, distribution, metabolism, and 
excretion (ADME) properties. The key findings 
highlight the potential of PpIX for topical applications 
due to its high skin permeability and suggest a 
moderate-to-high tissue distribution, which is beneficial 
for photodynamic therapy. However, discrepancies in 
predictions, particularly regarding oral bioavailability, 
protein binding, and hepatotoxicity, underscore the 
limitations of in silico approaches. These inconsistencies 
highlight the need for experimental validation, 
especially regarding P-gp interactions, protein binding, 
and potential liver toxicity, to refine dosing strategies 
and ensure patient safety. Future studies should focus on 
resolving these conflicting predictions through in vitro 
and in vivo experiments, including investigations into P-
gp modulation, comprehensive liver function 
assessments, and detailed analysis of tissue distribution 
to further optimize PpIX-based photodynamic therapy 
protocols and enhance therapeutic outcomes. 
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