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Introduction: This study explored radiomics-based machine learning (ML) models as complementary tools 
to visual evaluation for classifying drug-resistant epilepsy patients and healthy controls using 18F-FDG brain 
Positron Emission Tomography (PET). Because visual interpretation can be subjective and variable, 
especially for novice readers, objective and reproducible computational methods are needed. 
Material and Methods: Twenty-one drug-resistant epilepsy patients and sixteen healthy controls underwent 
¹⁸F-FDG brain PET imaging. From contralateral brain regions, 92 radiomics features (first-order statistics and 
second-order texture matrices) were extracted. Feature selection included Student’s t-test, principal 
component analysis, and ridge regression. Logistic regression (LR) and support vector machine (SVM) 
classifiers were trained and evaluated using 10-fold cross-validation and repeated 80/20 train–test splits. A 
permutation test (n = 1000) assessed whether differences between classifier performances were statistically 
significant. LR, chosen for its lower computational cost and interpretability, was used for comparison with 
human visual assessments. 
Results: Across six radiomics feature groups, LR models demonstrated strong performance, with mean 
accuracy of 0.94(0.05), precision 0.96(0.03), recall 0.92(0.10), specificity 0.97(0.02), and AUC 0.98(0.00). 
SVM models showed similarly high accuracy 0.98(0.01), precision 0.94(0.05), recall 0.96(0.03), specificity 
0.98(0.01), and AUC 0.98(0.00). Novice visual assessments had moderate accuracy (0.62 and 0.67), perfect 
specificity, lower sensitivity (0.60 and 0.65), and AUCs of 0.80 and 0.825. The final LR model achieved a 
mean AUC of 0.96(0.01). 
Conclusion: This hybrid radiomics-visual approach improves classification accuracy in pre-surgical 
evaluation of drug-resistant epilepsy. By integrating quantitative radiomics with clinical interpretation, the 
framework reduces variability and improves reliability for less experienced clinicians. 
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Introduction 
Epilepsy, one of the most common neurological 

disorders, affects about 50 million people worldwide 
[1]. It is characterized by recurrent seizures and is 
linked to neurobiological, cognitive, and psychosocial 
impairments [2]. Its causes are classified as genetic, 
structural, metabolic, infectious, immune-mediated, or 
idiopathic [3]. About 30–40% of patients develop 
drug-resistant epilepsy (DRE), defined as persistent 
seizures despite two well-tolerated regimens [2, 4, 5]. 
Surgical resection of the epileptogenic zone (EZ) can 
provide seizure control, requiring accurate 
presurgical localization [6, 7]. Structural magnetic 
resonance imaging (MRI) can assist in identifying the 
underlying cause and localizing the epileptogenic 
zone. Neuropsychological testing, functional magnetic 

resonance imaging (fMRI),  ¹⁸F-Fluorodeoxyglucose 
(¹⁸F-FDG) imaging, tractography, 
magnetoencephalography (MEG), and a fusion of fMRI 
and electroencephalography (EEG) are among the 
assessments employed [8]. MRI detects epileptogenic 
lesions in up to half of DRE patients, though subtle 
lesions may be missed without expert review [9, 10]. 
Interictal 18F-FDG PET reveals hypometabolism in 
epileptogenic regions and aids diagnosis when MRI or 
EEG results are inconclusive [8, 11]. Identifying the 
seizure onset zone (SOZ) is essential for surgical 
decision-making [11]. Despite its advantages, ¹⁸F-FDG 
brain positron emission tomography (PET) is often 
interpreted qualitatively through visual analysis [12]. 
Interpretation accuracy depends on reader expertise 
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and image quality, making complementary tools 
especially valuable for novice physicians [13].  

Radiomics extracts quantitative features beyond 
human perception. Combined with machine learning 
(ML), it enables automated, objective pattern 
recognition increasingly applied in epilepsy imaging  
[14-18]. 

We hypothesized that observer expertise affects 
visual assessment and developed a radiomics-based 
ML framework to complement it. 

Radiomics extracts high-dimensional data from 
medical images, capturing subtle metabolic patterns 
that are often missed by conventional visual evaluation. 
ML algorithms, such as logistic regression (LR), then 
transform these features into actionable diagnostic 
insights. Our framework integrates computational 
precision with clinical context, combining ML output 
and expert interpretation for objective yet relevant 
assessment.  Previous studies have mostly focused on 
isolated approaches. For example, Liu et al. (2018) used 
radiomics to predict epilepsy in glioma patients but did 
not integrate clinical evaluations, limiting its practical 
use [19]. On the other hand, Avendaño-Estrada et al. 
relied only on visual interpretations of 18F-FDG PET 
images, which can vary between observers [12]. Our 
work bridges this gap by using radiomics to augment, 
not replace, clinical expertise. By validating radiomics 
features against expert consensus (ground truth), we 
ensure that the computational models align with 
clinically meaningful patterns for classifying DRE 
patients from HCs. 

We developed ML models using radiomics features 
from 18F-FDG brain PET images to complement visual 
assessments and assist novice physicians in 
distinguishing DRE patients from HCs.  

 

Materials and Methods 
Patients’ population and PET imaging parameters 

In this retrospective study, we analyzed 18F-FDG 
brain PET images from 21 patients with refractory 
epilepsy (mean age: 55 ± 11 years; 13 males [61.9%] 
and 8 females [38.1%]). The sample size was 
determined based on the availability of eligible imaging 
data and strict inclusion/exclusion criteria. As a 

retrospective study, no prior power analysis was 
performed; however, robust cross-validation (CV) and 
feature selection techniques were applied to minimize 
overfitting and improve generalizability.   

All patients had prior EEG/MRI evaluations that 
failed to localize the EZ and presented with temporal or 
extra-temporal epilepsy. Of 31 initial 18F-FDG PET 
scans, 10 generalized epilepsy cases were excluded. 
Figure 1 shows the inclusion/exclusion flowchart. All 
scans were acquired on a Biograph PET/CT scanner 
(Siemens Healthcare, Erlangen, Germany) at Shariati 
Hospital, Tehran, Iran, following manufacturer-
recommended calibration and acquisition protocols. 
Patients rested in a dimly lit room for 40 min before 
receiving ~370 MBq of 18F-FDG. PET acquisition began 
60 min post-injection as single-bed, 10-min scans, with 
low-dose computed tomography (CT) (80–130 kV, 50–
80 mAs) for attenuation correction. Images were 
reconstructed using matrix sizes of 336 × 336 × 110 
with voxel sizes of 1.018 × 1.018 × 3 mm3.  

The control group included 16 healthy controls 
(HCs) (age = 56 ± 8.1 years; 11 females) from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database. 

ADNI, launched in 2003, integrates imaging, 
biomarkers, and cognitive testing to monitor mild 
cognitive impairment (MCI) and early Alzheimer’s 
Disease (AD) progression (www.adni-info.org.). 

 Based on ADNI’s documentation of PET 
acquisition protocols, the HC category used in this study 
had been injected 18F-FDG (mean 185 MBq) 
intravenously, and the images had been reconstructed in 
a 336 × 336 × 109 matrix with the voxel size of 1.018× 
1.018× 2.02 mm3. Table 1 shows PET imaging 
parameters and acquisition settings. 

The study received ethical approval from the Ethics 
Committee of Shahid Sadoughi University of Medical 
Sciences (Code: IR.SSU.MEDICINE.REC.1395.293) 
and complied with the revised Declaration of Helsinki. 
Participants provided informed consent. All personal 
identifiers were removed, and data were securely stored. 
ADNI data followed its standard anonymization 
protocols. Figure 1 outlines participant inclusion and 
exclusion.  

 
Table 1. PET Imaging Parameters and Acquisition Settings Used in This Study 
 

Parameter Shariati Hospital (Patients) ADNI Database (Healthy Controls) 

PET Scanner Model Siemens Biograph PET/CT Siemens Biograph PET/CT 

Injected Dose (MBq) ~370 MBq ~185 MBq 

Pre-scan Rest Time 60 min 30 min 

Scan Duration 10 min  30 min 

Matrix Size 336 × 336 × 110 336 × 336 × 109 

Voxel Size (mm³) 1.018 × 1.018 × 3 1.018 × 1.018 × 2.02 

Attenuation Correction Low-dose CT  Low-dose CT 

Reconstruction Parameters Iterative: OSEM-3D Iterative: OSEM-3D 

 
OSEM-3D: Three-dimensional ordered subsets expectation-maximization. PET: Positron Emission Tomography. CT: computed tomography. 

  
 

http://www.adni-info.org/
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Figure 1. Flow diagram of subject inclusion and exclusion criteria. DRE: Drug-Resistant Epilepsy. 18F-FDG: F18 Fludeoxyglucose. PET: Positron 
Emission Tomography   

 

    
 

Figure 2. Illustrations of manually drawn regions of interest in contralateral brain lobes of a healthy control (A) and an epilepsy patient (B) through 
F18 Fludeoxyglucose Positron Emission Tomography images. 

 

Segmentation and Image Preprocessing 
Before segmentation, a median filter (Iteration =3, 

XY planes) was applied for image smoothing and noise 
reduction. The drawn regions of interest (ROIs) in 
patients’ 18F-FDG brain PET images encompassed the 
suspected brain lobes, including SOZs, and their 
corresponding contralateral lobes. For HCs, the same 
procedure was applied to randomly selected 
contralateral lobes on both hemispheres. The 
segmentation was performed manually and 
meticulously, with each slice segmented individually 
using Avizo software (version 2019, RRID: 
SCR_014431). Figure 2 is an example of regions of 
interest in a healthy control and an epilepsy patient on 
18F-FDG PET images. 

ROIs were delineated by consensus between two 
nuclear medicine (NM) physicians, manually 
segmented, and independently reviewed in a blinded 
manner by a senior NM specialist. Although inter-/intra-
rater variability was not quantified, expert supervision 
ensured consistency. The thresholds used, including the 
50% threshold, were also determined by consensus and 
applied uniformly across all cases. 

The identification of the suspected lobes in patients 
to draw ROIs relied on the consensus of two expert NM 
physicians’ interpretations, serving as the ground truth 
for the study. All assessments were blinded to patient 
data. 

The masks and the 18F-FDG brain PET images were 
saved in meta image header and raw data format (MHA) 
and used for radiomics feature extraction. Imaging 
protocols were standardized to minimize variability, 
including resampling all images to a uniform voxel size 
(1 × 1 × 1 mm³) before radiomics feature extraction. 
Inter-session variability was minimized by excluding 
scans with motion artifacts or incomplete coverage. 

During the preprocessing phase, missing data points 
were not a concern as the dataset was derived from 
complete and validated 18F-FDG brain PET imaging 
data. Outliers were handled by conducting thorough 
statistical inspections during feature selection, and 
features displaying significant inconsistencies were 
excluded. Z-score normalization was applied to 
standardize feature values, ensuring uniform scaling for 
ML model training. This process standardized each 
feature by centering it around zero and scaling it based 
on its standard deviation, which is critical for optimizing 
the performance of ML models, such as LR and support 
vector machine (SVM). 

 

Radiomics feature extraction 
92 features were extracted from each ROI on 18F-

FDG brain PET images using an open-source package 
(PyRadiomics, v3.0.1): [1] 19 first-order (F-order) 
features, and (2) 73 second-order features not 
considering the shape features (including gray level co-
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occurrence matrix (GLCM), gray level run-length 
matrix (GLRLM), gray-level size zone matrix 
(GLSZM), neighboring gray tone difference matrix 
(NGTDM), and gray level dependence matrix 
(GLDM)). Notably, most features in the PyRadiomics 
package adhere to the feature definitions outlined by the 
Imaging Biomarker Standardization Initiative (IBSI) 
[20]. 

Features were extracted from 878 patient slices 
(affected/unaffected lobes) and 884 HC slices (bilateral 
random lobes).  
 

Feature selection and normalization 
Feature selection was conducted to identify the most 

informative and non-redundant radiomics features. First, 
a statistical filtering process (e.g., Student’s t-test) was 
used to determine whether features showed significant 
differences between contralateral ROIs in patients and 
HCs. A total of 92 radiomics features were extracted, 
including F-order and second-order texture feature. The 
small dataset (21 patients, 16 HCs) yielded a ~2.5:1 
feature-to-sample ratio, increasing the risk of 
overfitting. 

To address this, dimensionality reduction was 
necessary to improve model generalizability. First, 
univariate feature selection (Student’s t-test) removed 
non-discriminative features, reducing redundancy. Then, 
Principal component analysis (PCA) was applied 
separately to each feature group, retaining 95% of the 
variance while mitigating multicollinearity. This 
threshold is commonly used in radiomics and 
neuroimaging studies to balance dimensionality 
reduction with information retention. PCA reduced 
redundancy by transforming features into uncorrelated 
components [21, 22], followed by ridge regression (L2 
regularization) to enhance model robustness. 

Ridge regression adds a penalty term (L2 norm) to 
the loss function, which shrinks the coefficients of 
correlated features toward zero. This prevents any single 
feature from dominating the model and ensures stability 
and generalizability, particularly in high-dimensional 
datasets. Together, PCA and ridge regression enhanced 
interpretability and retained key diagnostic information. 
After dimensionality reduction, 11 optimal features were 
retained: 2 GLCM, 2 GLDM, 1 GLRLM, 2 GLSZM, 1 
NGTDM, and 3 F-order features. The final number of 
principal components retained for each feature group is 
as follows: 6 (F-order), 5 (GLCM), 5 (GLDM), 3 
(GLRLM), 4 (GLSZM), 3 (NGTDM) (Table 4). 

To ensure consistency in scale, z-score 
normalization was applied to all remaining features. 
Outlier handling was inherently addressed through 
feature selection techniques, and no imputation was 
needed as there were no missing values in the dataset. 

 

Machine learning model building 
In this study, LR and SVM were selected for their 

interpretability and suitability for small, high-
dimensional dataset [23, 24]. Default hyperparameters 

(SVM with linear kernel, LR with L2 regularization) 
were used to avoid overfitting. Alternative models were 
preliminarily tested but showed similar or lower 
accuracy, supporting our choice. Also, models such as 
Convolutional Neural Networks (CNNs) were not tested 
in this study. Deep models need larger datasets to 
generalize, unsuitable for our limited sample. 
Additionally, Gated Recurrent Units are primarily 
designed for sequential data, whereas our study focused 
on static imaging-derived radiomics features. 

Stratified 10–fold cross–validation (CV) ensured 
balanced class representation and robust generalization. 
Each model was trained on nine folds and tested on one, 
with metrics averaged over 10 repetitions. The 10–fold 
approach offered a good balance between bias and 
variance for our limited sample [25], and performance 
was evaluated separately for each feature group. 

To statistically evaluate whether the performance 
differences between LR and SVM were significant, 
permutation tests (n = 1000) were performed using the 
AUC metric across all radiomics feature groups. AUC 
was selected as the representative metric due to its 
robustness to class imbalance and widespread use in 
classifier evaluation. The methodology followed 
standard random label shuffling to generate a null 
distribution of performance differences. 

LR was preferred for interpretability, linking 
coefficients directly to feature importance, which is 
critical for clinical translation. Additionally, LR is 
resource-efficient during deployment, making it more 
practical for real-world applications, and is widely 
adopted in medical studies due to its simplicity and 
reliability.  

Subsequently, for LR implementation, the dataset 
was randomly divided into 80% training and 20% test 
sets. The training set was further split 80–20 for 
validation. The training set was used for model learning, 
while the validation set provided an estimate of model 
performance. Splitting was repeated 10 times to reduce 
variability, with fixed randomization. The feature 
selection process and classification methods were 
implemented in Python 3.7.0 (RRID: SCR_008394) 
utilizing the Scikit-Learn library (version 0.24.1). 

 

Visual Assessment 
Two novice NM physicians evaluated 18F-FDG brain 

PET images slice by slice, independently. They assessed 
glucose metabolism asymmetry and uptake patterns in 
specific brain regions as well as the classification of 
DRE patients and HCs. The ground truth classification 
of patients and HCs was determined based on the 
consensus visual assessments of two expert NM 
physicians. Assessments were blinded; physicians had 
no access to patient data or prior EEG/MRI results. 
Performance metrics (accuracy, precision, recall, 
specificity, AUC) were calculated for visual 
assessments.  
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Figure 3. Flow diagram of radiomics models construction procedure. PET: Positron Emission Tomography. ROIs: Regions of Interest. GLCM: 
Gray Level Co-Occurrence Matrix. GLDM: Gray Level Dependence Matrix .GLRLM: Gray Level Run-Length Matrix .NGTDM: Neighboring 
Gray Tone Difference Matrix.GLSZM: Gray-Level Size Zone Matrix .F-Order: First-Order. PCA: Principal Component Analysis. SVM: Support 
Vector Machine. LR: Logistic Regression. CV: Cross Validation. AUC: Area Under the Curve. 

  

Performance evaluations and Statistical analysis 
Model performance was assessed via accuracy, 

precision, recall, specificity, and AUC for each fold; 
mean and standard deviation (SD) across folds 
quantified overall LR and SVM performance. 

For the final LR model, metrics were calculated 
across all feature groups and compared with AUCs from 
novice physicians’ visual assessments. Figure 3 
illustrates the step-by-step process of constructing our 
radiomics-based ML models. 

Mean ± SD and group differences in age and sex 
between patients and HCs were analyzed. The Student’s 
t-test was used for univariate analysis of baseline 
characteristics and continuous variables. The Fisher 
exact test was employed to evaluate the statistical 
differences in categorical variables. Statistical analysis 
was conducted using SPSS software (version 26.0; IBM, 
RRID: SCR_019096), with significance set at p < 0.05.  
 

Results 
Study Participants 

Table 2 summarizes participant demographics. The 

mean ages of patients and HCs were 55 and 56 years, with 

no significant group differences in age or sex.   

P-values were achieved by a two-tailed t-test (age) and 

Fisher exact test (gender). *#: Number. SD (Standard 

Deviation). 

 Table 3 presents performance metrics from visual 

assessments by two novice NM physicians (Visualization1 

and Visualization2) for classifying DRE patients and HCs.  

Table 4 lists excluded and retained features for each 

group. Features showing significant asymmetry in HCs and 

non-significant differences in patients were removed . The 

ultimate features were determined by applying PCA 

followed by ridge regression on each group of features.  

 

Table 1. Demographic characteristics of patients and healthy controls 
 

Characteristics Patients Healthy Controls P-value 

Numbers (%) 21 (56.7) 16(43.2)  

Gender    

#* of male 13 5 0.09 

# of female 8 11 

Age (mean (SD)) 55 (11) 56(8.1) >0.53 

 

Table 3. Calculated accuracy, precision, sensitivity, specificity, and area under the curve (AUC) metrics for classification of drug-resistant epilepsy patients 

and healthy controls based on visualization of two novice nuclear medicine physicians 
 

Reader Accuracy Precision Recall (Sensitivity) Specificity AUC 

Visualization1 

Visualization2 

0. 62 1 0.6 1 0.8 

0. 67 1 0.65 1 0.825 
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Table 4. Names and numbers of the excluded and retained features 
 

Excluded features Feature 

categories 

 Features' names Number 

Provided  
Significant differences in 

contralateral ROIs in HCs’ group. 

F-order  10Percentile, Kurtosis, Interquartile Range, Entropy, 
Minimum, Robust Mean Absolute Deviation 

6 

GLCM  Correlation, Joint Energy, Joint Entropy, Inverse Difference 

Moment Normalized,  Inverse Difference Normalized, 

Maximum Probability, Sum Entropy 

7 

GLDM  Dependence Non-Uniformity, Dependence Entropy, Low 

Gray Level Emphasis, Large Dependence Low Gray Level 

Emphasis  

4 

GLRLM  Long Run Low Gray Level Emphasis, Run Entropy, Run 
Length Non-Uniformity 

3 

GLSZM  Gray Level Non-Uniformity Normalized, Large Area Low 

Gray Level Emphasis, Size Zone Non-Uniformity, Zone 
Entropy 

4 

NGTDM  Strength 1 

 

Provided  

non-significant difference in 
contralateral ROIs in patients’ 

group. 

F-order  Minimum, 10Percentile 2 

GLCM  Correlation, Inverse Difference Moment Normalized, 

Inverse Difference Normalized, Maximum Probability, 
Informational Measure of Correlation2  

5 

GLDM  Dependence Non-Uniformity, Low Gray Level Emphasis, 

Large Dependence Low Gray Level Emphasis, Small 

Dependence Low Gray Level Emphasis  

4 

GLRLM  Gray Level Non-Uniformity Normalized, Long Run Low 

Gray Level Emphasis, Low Gray Level Run Emphasis, Run 

Length Non-Uniformity, Short Run Low Gray Level 
Emphasis 

5 

GLSZM  Gray Level Non-Uniformity Normalized, Large Area Low 

Gray Level Emphasis, Low Gray Level Zone Emphasis, 

Size Zone Non-Uniformity, Small Area Low Gray Level 
Emphasis 

5 

NGTDM  Busyness 1 

Retained features 

 
Final selected features 

provided 

non-significant difference in 
contralateral ROIs in 

HCs’ group and significant 

differences in contralateral ROIs in 
patients’ group. 

Feature 

categories 

Number of 

components for 
PCA retaining 

95% variance 

Features' names Number 

F-order 6 90Percentile, Energy, Maximum 3 

GLCM 5 Autocorrelation, Joint Average 2 

GLDM 5 Dependence Non-Uniformity Normalized, Gray Level 
Non-Uniformity 

2 

GLRLM 3 Gray Level Non-Uniformity 1 

GLSZM 4 Gray Level Variance, Large Area High Gray Level 

Emphasis 

2 

NGTDM 3 Coarseness 1 

 

F-order (First Order), GLCM (Gray Level Co-

Occurrence Matrix), GLDM (Gray Level Dependence 

Matrix), GLRLM (Gray Level Run-Length Matrix), 

GLSZM (Gray-Level Size Zone Matrix), HCs (Healthy 

Controls), NGTDM (Neighboring Gray Tone Difference 

Matrix), PCA (principal component analysis), ROIs 

(regions of interest) 

 Table 5 and Figure 4 summarize 10–fold CV results 

for LR and SVM across all feature groups. Both models 

showed comparable performance, with AUC differences 

ranging from –0.004 to 0.000 (p = 0.92–1.00). Given this 

similarity, LR was selected for its interpretability and 

simplicity.   
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Figure 4. Boxplots of test dataset's Accuracy (A), Precision (B), Recall (C), Area under the curve (AUC) (D), and Specificity (E) including logistic regression 

(LR) and support vector machine (SVM) classifiers through 10–fold cross validation. GLCM: Gray Level Co-Occurrence Matrix. GLDM: Gray Level 

Dependence Matrix.GLRLM: Gray Level Run-Length Matrix. NGTDM: Neighboring Gray Tone Difference Matrix. GLSZM: Gray-Level Size Zone 
Matrix. 

 
 

Figure 5. Mean area under the curve of the receiver operating characteristic (AUC-ROC) curves (with 10 times repetition) achieved by the logistic regression 

(LR) algorithm for the train and validation datasets together with the area under the curve of the receiver operating characteristic (AUC-ROC) curves of 

visual evaluations by two novice nuclear medicine physicians termed Visualization1 and Visualization2. Mean AUC-ROC curves of the LR models included 

groups of  first-order (F-order) features (A), Gray Level Co-Occurrence Matrix (GLCM) features (B), Gray Level Dependence Matrix (GLDM) features (C), 
Gray Level Run-Length Matrix (GLRLM) features (D), Gray-Level Size Zone Matrix (GLSZM) features (E), Neighboring Gray Tone Difference Matrix 

(NGTDM) features (F). 

 

 Table 6 presents LR performance on validation and 

test sets (80–20 train–test, 80–20 validation split), reporting 

mean ± SD for all metrics.   

Tables 5 and 6 present results using different evaluation 

strategies. Table 5 reports the performance of both LR and 

SVM models based on 10–fold CV, providing a robust 

estimate of generalizability. Table 6 presents the 

performance of the final LR classifier on validation and test 

sets of each group using an 80–20 train–test split with 80–

20 training–validation subsets. 

Figure 5 displays AUC- Receiver Operating 

Characteristic (ROC) curves for LR models (test and 

validation sets) alongside novice NM physicians’ 

visualizations.  
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Table 5. Classification (healthy controls, patients) performance indices using support vector machine (SVM) and logistic regression (LR) with 10–fold cross 
validation across feature categories. Mean (Standard Deviation) values are shown. 

 

Datasets Classifiers Feature categories Accuracy Precision Recall (Sensitivity) Specificity AUC 

Train 
 

 

 

SVM 
 

 

 
 

 

 
 

F-order 0.97(0.00) 0.98(0.00) 0.96(0.00) 0.98(0.00) 0.99(0.00) 

GLCM 0.97(0.00) 0.99(0.00) 0.94(0.00) 0.99(0.00) 0.99(0.00) 

GLDM 0.96(0.00) 0.98(0.00) 0.95(0.00) 0.98(0.00) 0.99(0.00) 

GLRLM 0.91(0.00) 0.93(0.00) 0.88(0.01) 0.97(0.00) 0.95(0.00) 

GLSZM 0.97(0.00) 0.98(0.00) 0.95(0.00) 0.99(0.00) 0.99(0.00) 

NGTDM 0.91(0.00) 0.94(0.00) 0.89(0.01) 0.94(0.00) 0.96(0.00) 

Test 

 

 
 

F-order 0.91(0.08) 0.95(0.03) 0.87(0.16) 0.98(0.01) 0.97(0.01) 

GLCM 0.96(0.05) 0.99(0.00) 0.92(0.11) 0.99(0.00) 0.99(0.00) 

GLDM 0.96(0.03) 0.98(0.02) 0.94(0.06) 0.98(0.01) 0.99(0.00) 

GLRLM 0.91(0.05) 0.94(0.05) 0.89(0.11) 0.97(0.01) 0.95(0.04) 

GLSZM 0.97(0.02) 0.97(0.02) 0.97(0.05) 0.99(0.00) 0.99(0.00) 

NGTDM 0.91(0.06) 0.94(0.04) 0.88(0.13) 0.94(0.03) 0.95(0.03) 

Train 
 

 

 

LR 
 

 

 
 

 

 
 

F-order 0.96(0.00) 0.97(0.00) 0.95(0.00) 0.97(0.00) 0.99(0.00) 

GLCM 0.96(0.00) 0.98(0.00) 0.94(0.00) 0.98(0.00) 0.99(0.00) 

GLDM 0.96(0.00) 0.98(0.00) 0.95(0.00) 0.98(0.00) 0.99(0.00) 

GLRLM 0.90(0.00) 0.90(0.00) 0.91(0.00) 0.97(0.00) 0.96(0.00) 

GLSZM 0.98(0.00) 0.98(0.00) 0.97(0.00) 0.99(0.00) 0.99(0.00) 

NGTDM 0.91(0.00) 0.94(0.00) 0.87(0.01) 0.94(0.00) 0.97(0.00) 

Test 

 

 
 

 

 

F-order 0.92(0.08) 0.94(0.03) 0.88(0.15) 0.97(0.02) 0.98(0.00) 

GLCM 0.96(0.05) 0.99(0.01) 0.93(0.10) 0.98(0.01) 0.99(0.01) 

GLDM 0.96(0.04) 0.97(0.04) 0.95(0.06) 0.98(0.01) 0.99(0.00) 

GLRLM 0.90(0.06) 0.91(0.06) 0.90(0.10) 0.97(0.02) 0.96(0.03) 

GLSZM 0.98(0.02) 0.98(0.01) 0.97(0.05) 0.99(0.00) 0.99(0.00) 

NGTDM 0.91(0.06) 0.94(0.04) 0.87(0.13) 0.94(0.03) 0.97(0.03) 

 
AUC (Area under the curve), F-order (First Order), GLCM (Gray Level Co-Occurrence Matrix), GLDM (Gray Level Dependence Matrix), GLRLM (Gray 

Level Run-Length Matrix), GLSZM (Gray-Level Size Zone Matrix), HCs (Healthy Controls), NGTDM (Neighboring Gray Tone Difference Matrix) 

 
Table 6. Classification (healthy controls, patients) performance indices by logistic regression (LR) for each group of features. Mean (Standard Deviation) 

values are shown 

 

Datasets Classifier Feature categories Accuracy Precision Recall (Sensitivity) Specificity AUC 

Test 

 

 
 

LR 

 

 
 

 

 
 

 

F-order 0.95(0.01) 0.96(0.02) 0.94(0.03) 0.99(0.00) 0.99(0.00) 

GLCM 0.96(0.01) 0.98(0.01) 0.94(0.02) 0.98(0.00) 0.96(0.01) 

GLDM 0.96(0.01) 0.97(0.01) 0.95(0.02) 0.99(0.00) 0.98(0.01) 

GLRLM 0.89(0.02) 0.90(0.02) 0.89(0.04) 0.95(0.01) 0.96(0.02) 

GLSZM 0.97(0.01) 0.98(0.01) 0.97(0.01) 1(0.00) 0.97(0.01) 

NGTDM 0.90(0.01) 0.93(0.03) 0.86(0.03) 0.97(0.01) 0.92(0.01) 

Validation 
 

 

 

F-order 0.96(0.01) 0.96(0.02) 0.95(0.01) 0.98(0.01) 0.99(0.01) 

GLCM 0.96(0.01) 0.99(0.00) 0.93(0.02) 0.99(0.01) 0.96(0.01) 

GLDM 0.96(0.01) 0.97(0.01) 0.95(0.02) 0.97(0.01) 0.98(0.01) 

GLRLM 0.90(0.02) 0.91(0.03) 0.89(0.03) 0.91(0.02) 0.96(0.02) 

GLSZM 0.98(0.00) 0.98(0.00) 0.98(0.01) 0.99(0.00) 0.96(0.00) 

NGTDM 0.92(0.02) 0.96(0.01) 0.87(0.04) 0.95(0.01) 0.91(0.01) 

 

AUC (Area under the curve), F-order (First Order), GLCM (Gray Level Co-Occurrence Matrix), GLDM (Gray Level Dependence Matrix), GLRLM (Gray 

Level Run-Length Matrix), GLSZM (Gray-Level Size Zone Matrix), HCs (Healthy Controls), NGTDM (Neighboring Gray Tone Difference Matrix) 
 

Discussion 
Epilepsy affects about 1% of the global population, 

and identifying the EZ accurately is critical for 
successful surgical outcomes in DRE [26-28]. 18F-FDG 
PET plays a key role in presurgical evaluation by 
revealing metabolic abnormalities that correlate with 
seizure onset zones and surgical prognosis [29-31]. 
However, conventional visual assessment of PET 

images is often subjective and highly dependent on 
physician expertise, making subtle abnormalities 
difficult to detect [13, 32-34]. Recent advances in AI 
and ML have shown great promise in enhancing 
diagnostic precision, reducing observer variability, and 
supporting novice physicians in clinical decision-
making [23, 35-38]. 
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We applied radiomics analysis of ¹⁸F-FDG brain 
PET images to classify DRE patients and HCs. To 
identify the most informative features, we excluded 
those with significant differences between contralateral 
ROIs in HCs (p < 0.05) and non-significant differences 
in patients (p > 0.05), followed by principal component 
analysis (PCA) and ridge regression to minimize 
redundancy and multicollinearity (Table 4). 

SVM and LR were evaluated using stratified 10–fold 
CV for each feature group. Given the exploratory nature 
of this work, confidence intervals and hypothesis testing 
were omitted to emphasize model feasibility and 
performance metrics calculated through robust 10–fold 
CV [25].  

As shown in Table 5, both LR and SVM achieved 
high and comparable performance across all feature 
groups (AUC = 0.95–0.99), confirming their strong 
discriminative ability.  

Table 3 shows visual assessments by two novice NM 
physicians achieved moderate accuracy (0.62–0.67, 
AUC = 0.80–0.83) due to limited recall. In contrast, 
radiomics-based ML models (LR and SVM) reached 
mean AUC = 0.98 ± 0.00 (Table 5), confirming their 
superior reliability and value for less-experienced 
clinicians. 

Permutation testing showed no significant AUC 
differences between LR and SVM (Table 5 and Figure 
4), supporting the choice of LR as the final model for its 
interpretability and efficiency. The dataset was split into 
80–20 training–testing subsets, and 80–20 training–
validation subsets, repeated 10 times. 

Table 6 represents promising performances for the 
test dataset. These findings suggest that the choice of 
radiomics feature group can substantially influence 
model performance. F-order features achieved the 
highest AUC (0.99 ± 0.00), indicating strong 
discriminative power for distinguishing patients with 
epilepsy from HCs, outperforming features like 
NGTDM. Additionally, GLSZM features effectively 
captured spatial heterogeneity in glucose uptake, with 
metrics such as Large Area High Gray Level Emphasis 
contributing to the classification of epileptogenic 
regions. Although interictal PET imaging typically 
reveals hypometabolism, this feature may reflect subtle 
regional asymmetries or relatively preserved glucose 
intensities that were informative for distinguishing DRE 
patients from HCs. 

 The AUC values for the classification of patients 
and HCs based on the visualizations implemented by the 
two novice NM physicians, referred to as Visualization1 
and Visualization2 (shown in Figure 5), were 0.8 and 
0.825, respectively. Radiomics-based ML models 
significantly outperformed novice physicians (AUC = 
0.98 vs. 0.81), demonstrating superior reliability and 
sensitivity for DRE classification.  

Among feature groups, NGTDM had the lowest 
AUC = 0.92 ± 0.01, and F-order the highest AUC= 0.99 
± 0.00, both outperforming novice visualizations (mean 
AUC = 0.81). Thus, for classifying DRE and HCs, 
besides physicians’ visual interpretations, it can be 

helpful to define suspected contralateral brain lobes and 
implement such radiomics-based LR models to boost the 
diagnosis accuracy.  

This study demonstrated that radiomics-based ML 
models significantly outperformed novice visual 
assessments in classifying DRE patients and HCs from 
¹⁸F-FDG brain PET images.  

The LR model achieved a mean ± SD AUC of 0.96 ± 
0.01, outperforming novice NM physicians (AUC: 0.80–
0.825) (Table 3, Figure 5). Despite achieving high 
specificity and precision in the visual assessments, their 
moderate accuracy highlights limitations in identifying 
all affected patients. This underscores the potential 
value of radiomics models as adjunct tools, offering 
consistent sensitivity while maintaining interpretability. 
This gap highlights radiomics’ ability to detect subtle 
metabolic asymmetries (e.g., in [GLSZM] features) that 
novices often overlook, directly addressing the study’s 
goal of reducing diagnostic variability. 

Mean values of precision (0.95 ± 0.01)  and recall 
(0.95 ± 0.01) among the six feature categories indicate 
the model minimizes both false positives (misclassifying 
HCs) and false negatives (missing DRE cases), critical 
for avoiding unnecessary invasive procedures or delayed 
surgeries. 

In addition to accuracy, precision, recall, and AUC, 
we emphasized specificity for its key role in correctly 
identifying HCs and minimizing false positives. 
Including this metric provided a more balanced 
evaluation of model performance, enhancing 
interpretability and clinical relevance in distinguishing 
DRE patients from HCs. 

Radiomics-based ML models complement visual 
assessments by offering quantitative, objective insights 
that improve diagnostic accuracy and confidence—
especially for novice physicians. They also accelerate 
image analysis, reduce observer variability, and 
streamline decision-making in presurgical evaluations.  

Integrating radiomics-based ML into clinical 
workflows remains challenging due to inter-scanner 
variability, need for standardized preprocessing, and 
limited computational or technical resources in some 
settings. The "black-box" nature of these models can 
make it difficult for clinicians to trust and adopt them 
without clear explanations or visual aids. 

Obtaining regulatory approval for ML tools in 
healthcare can be a long and resource-intensive process, 
requiring thorough validation. Clinicians also need 
training to use the tool effectively, and there may be 
resistance to new technologies. Further validation across 
diverse patient demographics and imaging centers is 
necessary to ensure the model's generalizability and 
reduce biases. Seamless integration with existing 
clinical systems is needed to avoid disrupting current 
practices. Addressing data privacy, security, and 
accountability in case of diagnostic errors is essential for 
compliance with ethical and legal standards. 

Our high-performing ML models (LR, SVM) align 
with Hao et al. [39] and Liao et al. [40], ], though prior 
work mainly used MRI rather than PET-based 
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biomarkers. Compared to these works, our study 
provides novel evidence that PET-based radiomics can 
achieve superior classification performance. Hao et al. 
focused on localizing the epileptogenic zone using 
radiomics features from 18F-FDG PET images [39]. 
Their model achieved a mean ± SD accuracy of 0.84 ± 
0.03, sensitivity of 0.78 ± 0.13, specificity of 0.84 ± 
0.04, and a mean AUC of 0.89 ± 0.05 in identifying the 
epileptogenic zone in TLE patients.  In the study by 
Liao et al. a radiomics-based ML model utilizing 18F-
FDG PET features achieved an accuracy of 0.948 
sensitivity of 0.941 precision of 0.985, and an AUC of 
0.984 in distinguishing temporal lobe epilepsy (TLE) 
patients from healthy controls [40]. Above mentioned 
studies achieved a high AUC for distinguishing between 
patients with temporal lobe epilepsy and healthy 
individuals using a radiomics-based ML model based on 
18F-FDG brain PET images. To review some studies 
exploring the use of radiomics in epilepsy as a central 
nervous system disease, in 2018, Liu et al. successfully 
developed and validated a prediction model for 
accurately predicting epilepsy incidence in low-grade 
glioma patients. The model demonstrated an accuracy of 
0.793 in the primary cohort and 0.75 in the validation 
cohort, with an AUC of 0.875 for the primary cohort 
and 0.816 for the validation cohort.[19]. In 2019, Mo et 
al. presented a computational model that utilizes high-
throughput radiomics features for the detection of MRI-
negative hippocampal sclerosis as a histopathological 
hallmark and major underlying cause of temporal lobe 
epilepsy. They achieved an accuracy of 0.958, 
sensitivity of 0.963, specificity of 0.956, and AUCs of 
0.997 in the primary cohort and 0.978 in the validation 
cohort [16]. In 2019, Zhuang et al. investigated the 
predictors of epilepsy presentation in unruptured brain 
arteriovenous malformations (bAVMs) through 
quantitative evaluation of location and radiomics 
features on T2-weighted imaging. They found that 
epilepsy-susceptible bAVMs exhibited distinct locations 
and radiomics features on T2-weighted imaging. The 
predictive score demonstrated an accuracy of 0.822 in 
the training dataset and 0.778 in the test dataset. The 
AUC was 0.866 with a 95% confidence interval of 
0.791–0.940. On the training dataset, the sensitivity was 
0.800 and the specificity was 0.850. On the test dataset, 
the sensitivity was 0.786, the specificity was 0.769 [41]. 
In 2021, Cheong et al. discovered significant differences 
in radiomics features between the affected and 
unaffected sides of patients with temporal lobe epilepsy 
(TLE). They found that radiomics analysis not only 
revealed abnormalities in the extrahippocampal regions 
of the affected side in TLE patients but also had the 
potential to identify MRI-negative cases of TLE. The 
extrahippocampal model achieved an AUC of 0.97 
(95% CI, 0.94–1.00) on the training set, 0.90 (95% CI, 
0.86–0.93) on the internal validation set, and 0.92 (95% 
CI, 0.86–0.98) on the external validation set. For the 
external validation, it showed a sensitivity of 0.92 and a 
specificity of 0.96 [42]. In a study in 2021, Gao et al. 
explored the relationship between radiomics features 

and frontal glioma-associated epilepsy (GAE) and 
developed a robust radiomics-based model for 
predicting frontal GAE. Their findings indicate that 
radiomics analysis can effectively predict GAE without 
invasive procedures, enabling more accurate treatment 
planning for frontal glioma. Their proposed clinical-
radiomics model holds promise for the precise 
prediction of frontal GAE. They achieved an accuracy 
of 0.82 sensitivity of 0.803 specificity of 0.840, and 
AUCs of 0.886 (0.819–0.940) in the training cohort and 
an accuracy of 0.782, sensitivity of 0.75, specificity of 
0.815, and AUCs of 0.836 (0.707–0.937) in the test 
cohort [43]. 

 

Limitations and Future Work 
This study has several limitations to consider. First, 

using PET data from two centers may have introduced 
variability due to differences in acquisition protocols 
and patient populations, even though both sites used the 
same scanner model. Although we applied standardized 
preprocessing steps, such as resampling, intensity 
normalization, and exclusion of asymmetric features in 
HCs, we did not formally harmonize inter-center 
variations. ComBat harmonization was not applied due 
to differing cohort distributions; future multi-site studies 
should assess and mitigate inter-center effects. 

Second, all ROI delineations were determined based 
on expert consensus between two NM physicians to 
ensure consistency and reduce subjective variability. 
The segmentation was performed manually by an 
experienced professional and independently reviewed in 
a blinded manner by a senior NM specialist to validate 
accuracy and adherence to standardized anatomical 
guidelines. Although consistent, no formal rater-
agreement metrics were computed; future work will 
include reproducibility analyses (e.g., Dice coefficient 
or ICC) and explore automated or semi-automated 
segmentation methods such as deep learning to improve 
standardization and reduce observer bias. 

Third, although a combined-feature model using 
PCA was explored, it was excluded from the main 
analysis due to limited interpretability. Instead, we 
evaluated models based on individual feature groups to 
emphasize their distinct contributions. Future studies 
should consider advanced feature fusion techniques to 
enhance classification robustness while preserving 
explainability. 

Finally, the small sample size limited subgroup 
analyses. Larger, multi-center studies are needed to 
validate findings and assess radiomics patterns across 
clinical subtypes. 

 

Conclusion 
In conclusion, the analysis reveals that 18F-FDG 

brain PET radiomics-based ML models can serve as a 
complementary tool to enhance diagnostic accuracy in 
classifying patients and HCs during the pre-surgical 
evaluation of DRE patients. In addition to visual 
interpretations, when physicians delineate suspected 
contralateral brain lobes and apply the radiomics-based 
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ML models, it enhances diagnostic accuracy, especially 
benefiting less-experienced physicians. These 
radiomics-based ML models leverage quantitative 
imaging data to extract meaningful features, offering 
valuable insights that support more informed clinical 
decision-making. However, further validation and 
refinement of the models are essential to fully realize 
their potential and establish their clinical utility in 
enhancing the management of DRE. 
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