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ABSTRACT

Introduction: This study explored radiomics-based machine learning (ML) models as complementary tools
to visual evaluation for classifying drug-resistant epilepsy patients and healthy controls using **F-FDG brain

Positron Emission Tomography (PET). Because visual interpretation can be subjective and variable,
especially for novice readers, objective and reproducible computational methods are needed.

Material and Methods: Twenty-one drug-resistant epilepsy patients and sixteen healthy controls underwent
¥F-FDG brain PET imaging. From contralateral brain regions, 92 radiomics features (first-order statistics and
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second-order texture matrices) were extracted. Feature selection included Student’s t-test, principal

Keywords: component analysis, and ridge regression. Logistic regression (LR) and support vector machine (SVM)
Radiomics classifiers were trained and evaluated using 10-fold cross-validation and repeated 80/20 train—test splits. A
Brain PET Imaging permutation test (n = 1000) assessed whether differences between classifier performances were statistically
Epilepsy significant. LR, chosen for its lower computational cost and interpretability, was used for comparison with

Classification
Machine Learning

human visual assessments.

Results: Across six radiomics feature groups, LR models demonstrated strong performance, with mean
accuracy of 0.94(0.05), precision 0.96(0.03), recall 0.92(0.10), specificity 0.97(0.02), and AUC 0.98(0.00).
SVM models showed similarly high accuracy 0.98(0.01), precision 0.94(0.05), recall 0.96(0.03), specificity
0.98(0.01), and AUC 0.98(0.00). Novice visual assessments had moderate accuracy (0.62 and 0.67), perfect
specificity, lower sensitivity (0.60 and 0.65), and AUCs of 0.80 and 0.825. The final LR model achieved a
mean AUC of 0.96(0.01).

Conclusion: This hybrid radiomics-visual approach improves classification accuracy in pre-surgical
evaluation of drug-resistant epilepsy. By integrating quantitative radiomics with clinical interpretation, the
framework reduces variability and improves reliability for less experienced clinicians.
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Introduction

Epilepsy, one of the most common neurological
disorders, affects about 50 million people worldwide

resonance imaging (fMRI), '®F-Fluorodeoxyglucose
(*8F-FDG) imaging, tractography,

[1]. It is characterized by recurrent seizures and is
linked to neurobiological, cognitive, and psychosocial
impairments [2]. Its causes are classified as genetic,
structural, metabolic, infectious, immune-mediated, or
idiopathic [3]. About 30-40% of patients develop
drug-resistant epilepsy (DRE), defined as persistent
seizures despite two well-tolerated regimens [2, 4, 5].
Surgical resection of the epileptogenic zone (EZ) can
provide seizure control, requiring accurate
presurgical localization [6, 7]. Structural magnetic
resonance imaging (MRI) can assist in identifying the
underlying cause and localizing the epileptogenic
zone. Neuropsychological testing, functional magnetic

magnetoencephalography (MEG), and a fusion of fMRI
and electroencephalography (EEG) are among the
assessments employed [8]. MRI detects epileptogenic
lesions in up to half of DRE patients, though subtle
lesions may be missed without expert review [9, 10].
Interictal 18F-FDG PET reveals hypometabolism in
epileptogenic regions and aids diagnosis when MRI or
EEG results are inconclusive [8, 11]. Identifying the
seizure onset zone (SOZ) is essential for surgical
decision-making [11]. Despite its advantages, *®F-FDG
brain positron emission tomography (PET) is often
interpreted qualitatively through visual analysis [12].
Interpretation accuracy depends on reader expertise
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and image quality, making complementary tools

especially valuable for novice physicians [13].
Radiomics extracts quantitative features beyond

human perception. Combined with machine learning

(ML), it enables automated, objective pattern
recognition increasingly applied in epilepsy imaging
[14-18].

We hypothesized that observer expertise affects
visual assessment and developed a radiomics-based
ML framework to complement it.

Radiomics extracts high-dimensional data from
medical images, capturing subtle metabolic patterns
that are often missed by conventional visual evaluation.
ML algorithms, such as logistic regression (LR), then
transform these features into actionable diagnostic
insights. Our framework integrates computational
precision with clinical context, combining ML output
and expert interpretation for objective yet relevant
assessment. Previous studies have mostly focused on
isolated approaches. For example, Liu et al. (2018) used
radiomics to predict epilepsy in glioma patients but did
not integrate clinical evaluations, limiting its practical
use [19]. On the other hand, Avendafio-Estrada et al.
relied only on visual interpretations of 18F-FDG PET
images, which can vary between observers [12]. Our
work bridges this gap by using radiomics to augment,
not replace, clinical expertise. By validating radiomics
features against expert consensus (ground truth), we
ensure that the computational models align with
clinically meaningful patterns for classifying DRE
patients from HCs.

We developed ML models using radiomics features
from 18F-FDG brain PET images to complement visual
assessments and assist novice physicians in
distinguishing DRE patients from HCs.

Materials and Methods

Patients’ population and PET imaging parameters

In this retrospective study, we analyzed ¥F-FDG
brain PET images from 21 patients with refractory
epilepsy (mean age: 55+ 11 years; 13 males [61.9%]
and 8 females [38.1%]). The sample size was
determined based on the availability of eligible imaging
data and strict inclusion/exclusion criteria. As a

retrospective study, no prior power analysis was
performed; however, robust cross-validation (CV) and
feature selection techniques were applied to minimize
overfitting and improve generalizability.

All patients had prior EEG/MRI evaluations that
failed to localize the EZ and presented with temporal or
extra-temporal epilepsy. Of 31 initial ¥F-FDG PET
scans, 10 generalized epilepsy cases were excluded.
Figure 1 shows the inclusion/exclusion flowchart. All
scans were acquired on a Biograph PET/CT scanner
(Siemens Healthcare, Erlangen, Germany) at Shariati
Hospital, Tehran, Iran, following manufacturer-
recommended calibration and acquisition protocols.
Patients rested in a dimly lit room for 40 min before
receiving ~370 MBq of ¥F-FDG. PET acquisition began
60 min post-injection as single-bed, 10-min scans, with
low-dose computed tomography (CT) (80-130 kV, 50—
80 mAs) for attenuation correction. Images were
reconstructed using matrix sizes of 336 x 336 x 110
with voxel sizes of 1.018 x 1.018 x 3 mm?,

The control group included 16 healthy controls
(HCs) (age = 56 + 8.1 years; 11 females) from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database.

ADNI, launched in 2003, integrates imaging,
biomarkers, and cognitive testing to monitor mild
cognitive impairment (MCI) and early Alzheimer’s
Disease (AD) progression (www.adni-info.org.).

Based on ADNI’s documentation of PET
acquisition protocols, the HC category used in this study
had been injected ©F-FDG (mean 185 MBq)
intravenously, and the images had been reconstructed in
a 336 x 336 x 109 matrix with the voxel size of 1.018x
1.018x 2.02 mm?3. Table 1 shows PET imaging
parameters and acquisition settings.

The study received ethical approval from the Ethics
Committee of Shahid Sadoughi University of Medical
Sciences (Code: IR.SSU.MEDICINE.REC.1395.293)
and complied with the revised Declaration of Helsinki.
Participants provided informed consent. All personal
identifiers were removed, and data were securely stored.
ADNI data followed its standard anonymization
protocols. Figure 1 outlines participant inclusion and
exclusion.

Table 1. PET Imaging Parameters and Acquisition Settings Used in This Study

Parameter

Shariati Hospital (Patients)

ADNI Database (Healthy Controls)

PET Scanner Model

Siemens Biograph PET/CT

Siemens Biograph PET/CT

Injected Dose (MBQq) ~370 MBq
Pre-scan Rest Time 60 min
Scan Duration 10 min

Matrix Size 336 x 336 x 110
Voxel Size (mm3)
Attenuation Correction

Reconstruction Parameters

Low-dose CT

1.018 x 1.018 x 3

Iterative: OSEM-3D

~185 MBq

30 min

30 min

336 x 336 x 109
1.018 x 1.018 x 2.02
Low-dose CT
Iterative: OSEM-3D

OSEM-3D: Three-dimensional ordered subsets expectation-maximization. PET: Positron Emission Tomography. CT: computed tomography.
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Patients suffering from DRE,

who have been prescribed "®F-FDG brain PET imaging , for

presurgical evaluations of EZ localization

(n=31)

10 patients with symptoms of ]

generalized epilepsy were excluded

4,[

[ 21 Patients ]

Figure 1. Flow diagram of subject inclusion and exclusion criteria. DRE: Drug-Resistant Epilepsy. *F-FDG: F18 Fludeoxyglucose. PET: Positron

Emission Tomography

Figure 2. lllustrations of manually drawn regions of interest in contralateral brain lobes of a healthy control (A) and an epilepsy patient (B) through

F18 Fludeoxyglucose Positron Emission Tomography images.

Segmentation and Image Preprocessing

Before segmentation, a median filter (Iteration =3,
XY planes) was applied for image smoothing and noise
reduction. The drawn regions of interest (ROIS) in
patients’ *®F-FDG brain PET images encompassed the
suspected brain lobes, including SOZs, and their
corresponding contralateral lobes. For HCs, the same
procedure was applied to randomly selected
contralateral lobes on both hemispheres. The
segmentation  was  performed  manually  and
meticulously, with each slice segmented individually
using Avizo software (version 2019, RRID:
SCR_014431). Figure 2 is an example of regions of
interest in a healthy control and an epilepsy patient on
18F-FDG PET images.

ROIs were delineated by consensus between two
nuclear medicine (NM) physicians, manually
segmented, and independently reviewed in a blinded
manner by a senior NM specialist. Although inter-/intra-
rater variability was not quantified, expert supervision
ensured consistency. The thresholds used, including the
50% threshold, were also determined by consensus and
applied uniformly across all cases.

The identification of the suspected lobes in patients
to draw ROIs relied on the consensus of two expert NM
physicians’ interpretations, serving as the ground truth
for the study. All assessments were blinded to patient
data.
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The masks and the 8F-FDG brain PET images were
saved in meta image header and raw data format (MHA)
and used for radiomics feature extraction. Imaging
protocols were standardized to minimize variability,
including resampling all images to a uniform voxel size
(1 x 1 x 1 mmd) before radiomics feature extraction.
Inter-session variability was minimized by excluding
scans with motion artifacts or incomplete coverage.

During the preprocessing phase, missing data points
were not a concern as the dataset was derived from
complete and validated ®F-FDG brain PET imaging
data. Outliers were handled by conducting thorough
statistical inspections during feature selection, and
features displaying significant inconsistencies were
excluded. Z-score normalization was applied to
standardize feature values, ensuring uniform scaling for
ML model training. This process standardized each
feature by centering it around zero and scaling it based
on its standard deviation, which is critical for optimizing
the performance of ML models, such as LR and support
vector machine (SVM).

Radiomics feature extraction

92 features were extracted from each ROl on 8F-
FDG brain PET images using an open-source package
(PyRadiomics, v3.0.1): [1] 19 first-order (F-order)
features, and (2) 73 second-order features not
considering the shape features (including gray level co-
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occurrence matrix (GLCM), gray level run-length
matrix (GLRLM), gray-level size zone matrix
(GLSZM), neighboring gray tone difference matrix
(NGTDM), and gray level dependence matrix
(GLDM)). Notably, most features in the PyRadiomics
package adhere to the feature definitions outlined by the
Imaging Biomarker Standardization Initiative (IBSI)
[20].

Features were extracted from 878 patient slices
(affected/unaffected lobes) and 884 HC slices (bilateral
random lobes).

Feature selection and normalization

Feature selection was conducted to identify the most
informative and non-redundant radiomics features. First,
a statistical filtering process (e.g., Student’s t-test) was
used to determine whether features showed significant
differences between contralateral ROIs in patients and
HCs. A total of 92 radiomics features were extracted,
including F-order and second-order texture feature. The
small dataset (21 patients, 16 HCs) yielded a ~2.5:1
feature-to-sample ratio, increasing the risk of
overfitting.

To address this, dimensionality reduction was
necessary to improve model generalizability. First,
univariate feature selection (Student’s t-test) removed
non-discriminative features, reducing redundancy. Then,
Principal component analysis (PCA) was applied
separately to each feature group, retaining 95% of the
variance while mitigating multicollinearity. This
threshold is commonly used in radiomics and
neuroimaging studies to balance dimensionality
reduction with information retention. PCA reduced
redundancy by transforming features into uncorrelated
components [21, 22], followed by ridge regression (L2
regularization) to enhance model robustness.

Ridge regression adds a penalty term (L2 norm) to
the loss function, which shrinks the coefficients of
correlated features toward zero. This prevents any single
feature from dominating the model and ensures stability
and generalizability, particularly in high-dimensional
datasets. Together, PCA and ridge regression enhanced
interpretability and retained key diagnostic information.
After dimensionality reduction, 11 optimal features were
retained: 2 GLCM, 2 GLDM, 1 GLRLM, 2 GLSZM, 1
NGTDM, and 3 F-order features. The final number of
principal components retained for each feature group is
as follows: 6 (F-order), 5 (GLCM), 5 (GLDM), 3
(GLRLM), 4 (GLSZM), 3 (NGTDM) (Table 4).

To ensure consistency in scale, z-score
normalization was applied to all remaining features.
Outlier handling was inherently addressed through
feature selection techniques, and no imputation was
needed as there were no missing values in the dataset.

Machine learning model building

In this study, LR and SVM were selected for their
interpretability and suitability for small, high-
dimensional dataset [23, 24]. Default hyperparameters
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(SVM with linear kernel, LR with L2 regularization)
were used to avoid overfitting. Alternative models were
preliminarily tested but showed similar or lower
accuracy, supporting our choice. Also, models such as
Convolutional Neural Networks (CNNs) were not tested
in this study. Deep models need larger datasets to
generalize, unsuitable for our limited sample.
Additionally, Gated Recurrent Units are primarily
designed for sequential data, whereas our study focused
on static imaging-derived radiomics features.

Stratified 10-fold cross—validation (CV) ensured
balanced class representation and robust generalization.
Each model was trained on nine folds and tested on one,
with metrics averaged over 10 repetitions. The 10—fold
approach offered a good balance between bias and
variance for our limited sample [25], and performance
was evaluated separately for each feature group.

To statistically evaluate whether the performance
differences between LR and SVM were significant,
permutation tests (n = 1000) were performed using the
AUC metric across all radiomics feature groups. AUC
was selected as the representative metric due to its
robustness to class imbalance and widespread use in
classifier evaluation. The methodology followed
standard random label shuffling to generate a null
distribution of performance differences.

LR was preferred for interpretability, linking
coefficients directly to feature importance, which is
critical for clinical translation. Additionally, LR is
resource-efficient during deployment, making it more
practical for real-world applications, and is widely
adopted in medical studies due to its simplicity and
reliability.

Subsequently, for LR implementation, the dataset
was randomly divided into 80% training and 20% test
sets. The training set was further split 80-20 for
validation. The training set was used for model learning,
while the validation set provided an estimate of model
performance. Splitting was repeated 10 times to reduce
variability, with fixed randomization. The feature
selection process and classification methods were
implemented in Python 3.7.0 (RRID: SCR_008394)
utilizing the Scikit-Learn library (version 0.24.1).

Visual Assessment

Two novice NM physicians evaluated ®F-FDG brain
PET images slice by slice, independently. They assessed
glucose metabolism asymmetry and uptake patterns in
specific brain regions as well as the classification of
DRE patients and HCs. The ground truth classification
of patients and HCs was determined based on the
consensus visual assessments of two expert NM
physicians. Assessments were blinded; physicians had
no access to patient data or prior EEG/MRI results.

Performance metrics (accuracy, precision, recall,
specificity, AUC) were calculated for visual
assessments.
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Performance evaluations and Statistical analysis

Model performance was assessed via accuracy,
precision, recall, specificity, and AUC for each fold,;
mean and standard deviation (SD) across folds
quantified overall LR and SVM performance.

For the final LR model, metrics were calculated
across all feature groups and compared with AUCs from
novice physicians’ visual assessments. Figure 3
illustrates the step-by-step process of constructing our
radiomics-based ML models.

Mean + SD and group differences in age and sex
between patients and HCs were analyzed. The Student’s
t-test was used for univariate analysis of baseline
characteristics and continuous variables. The Fisher
exact test was employed to evaluate the statistical
differences in categorical variables. Statistical analysis
was conducted using SPSS software (version 26.0; IBM,
RRID: SCR_019096), with significance set at p < 0.05.

Table 1. Demographic characteristics of patients and healthy controls

Study Participants

Table 2 summarizes participant demographics. The
mean ages of patients and HCs were 55 and 56 years, with
no significant group differences in age or sex.

P-values were achieved by a two-tailed t-test (age) and
Fisher exact test (gender). *#: Number. SD (Standard
Deviation).

Table 3 presents performance metrics from visual
assessments by two novice NM physicians (Visualizationl
and Visualization2) for classifying DRE patients and HCs.

Table 4 lists excluded and retained features for each
group. Features showing significant asymmetry in HCs and
non-significant differences in patients were removed . The
ultimate features were determined by applying PCA
followed by ridge regression on each group of features.

Characteristics Patients Healthy Controls P-value
Numbers (%) 21 (56.7) 16(43.2)

Gender

#* of male 13 5 0.09

# of female 8 11

Age (mean (SD)) 55 (11) 56(8.1) >0.53

Table 3. Calculated accuracy, precision, sensitivity, specificity, and area under the curve (AUC) metrics for classification of drug-resistant epilepsy patients
and healthy controls based on visualization of two novice nuclear medicine physicians

Reader Accuracy Precision Recall (Sensitivity) Specificity AUC
Visualizationl .62 1 0.6 1 0.8
Visualization2 .67 1 0.65 1 0.825
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Table 4. Names and numbers of the excluded and retained features

Excluded features Feature Features' names Number
categories
Provided F-order 10Percentile, Kurtosis, Interquartile Range, Entropy, 6
Significant differences in Minimum, Robust Mean Absolute Deviation
contralateral ROIs in HCs’ group. ~ GLCM Correlation, Joint Energy, Joint Entropy, Inverse Difference 7
Moment Normalized, Inverse Difference Normalized,
Maximum Probability, Sum Entropy
GLDM Dependence Non-Uniformity, Dependence Entropy, Low 4
Gray Level Emphasis, Large Dependence Low Gray Level
Emphasis
GLRLM Long Run Low Gray Level Emphasis, Run Entropy, Run 3
Length Non-Uniformity
GLSZM Gray Level Non-Uniformity Normalized, Large Area Low 4
Gray Level Emphasis, Size Zone Non-Uniformity, Zone
Entropy
NGTDM Strength 1
F-order Minimum, 10Percentile 2
Provided GLCM Correlation, Inverse Difference Moment Normalized, 5
non-significant  difference  in Inverse Difference Normalized, Maximum Probability,
contralateral ROIs in patients’ Informational Measure of Correlation2
group. GLDM Dependence Non-Uniformity, Low Gray Level Emphasis, 4
Large Dependence Low Gray Level Emphasis, Small
Dependence Low Gray Level Emphasis
GLRLM Gray Level Non-Uniformity Normalized, Long Run Low 5
Gray Level Emphasis, Low Gray Level Run Emphasis, Run
Length Non-Uniformity, Short Run Low Gray Level
Emphasis
GLSZM Gray Level Non-Uniformity Normalized, Large Area Low 5
Gray Level Emphasis, Low Gray Level Zone Emphasis,
Size Zone Non-Uniformity, Small Area Low Gray Level
Emphasis
NGTDM Busyness 1
Retained features Feature Number of  Features' names Number
categories components for
Final selected features PCA retaining
provided 95% variance
non-significant  difference  in - -
contralateral ROIs in F-order 6 90Percentile, Energy, Maximum 3
HCs' group and significant GLCM 5 Autocorrelation, Joint Avera_ge i 2
differences in contralateral ROlsin  GLDM 5 Dependence Non-Uniformity Normalized, Gray Level 2
patients’ group. Non-Uniformity
GLRLM 3 Gray Level Non-Uniformity \
GLSZM 4 Gray Level Variance, Large Area High Gray Level 2
Emphasis
NGTDM 3 Coarseness 1

F-order (First Order), GLCM (Gray Level Co-
Occurrence Matrix), GLDM (Gray Level Dependence
Matrix), GLRLM (Gray Level Run-Length Matrix),
GLSZM (Gray-Level Size Zone Matrix), HCs (Healthy
Controls), NGTDM (Neighboring Gray Tone Difference
Matrix), PCA (principal component analysis), ROls
(regions of interest)

Iran J Med Phys., Vol. 22, No. 4, July 2025

Table 5 and Figure 4 summarize 10-fold CV results
for LR and SVM across all feature groups. Both models
showed comparable performance, with AUC differences
ranging from —0.004 to 0.000 (p = 0.92-1.00). Given this
similarity, LR was selected for its interpretability and
simplicity.
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Figure 5. Mean area under the curve of the receiver operating characteristic (AUC-ROC) curves (with 10 times repetition) achieved by the logistic regression
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(NGTDM) features (F).

Table 6 presents LR performance on validation and
test sets (80—20 train—test, 80—20 validation split), reporting
mean + SD for all metrics.

Tables 5 and 6 present results using different evaluation
strategies. Table 5 reports the performance of both LR and
SVM models based on 10-fold CV, providing a robust
estimate of generalizability. Table 6 presents the
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performance of the final LR classifier on validation and test
sets of each group using an 8020 train-test split with 80—
20 training—validation subsets.

Figure 5 displays AUC- Receiver Operating
Characteristic (ROC) curves for LR models (test and
validation sets) alongside novice NM physicians’
visualizations.
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Table 5. Classification (healthy controls, patients) performance indices using support vector machine (SVM) and logistic regression (LR) with 10—fold cross
validation across feature categories. Mean (Standard Deviation) values are shown.

Datasets Classifiers Feature categories Accuracy Precision Recall (Sensitivity)  Specificity AUC
Train SVM F-order 0.9v(0.00) 0.9A(0.00)  0.97(0.00) 0.98(0.00) 0.99(0.00)
GLCM 0.97(0.00) 0.99(0.00) 0.94(0.00) 0.99(0.00) 0.99(0.00)
GLDM 0.96(0.00) 0.98(0.00) 0.95(0.00) 0.98(0.00) 0.99(0.00)
GLRLM 0.91(0.00) 0.93(0.00) 0.88(0.01) 0.97(0.00) 0.95(0.00)
GLSZM 0.97(0.00) 0.98(0.00) 0.95(0.00) 0.99(0.00) 0.99(0.00)
NGTDM 0.91(0.00) 0.94(0.00) 0.89(0.01) 0.94(0.00) 0.96(0.00)
Test F-order 0.91(0.08) 0.95(0.03) 0.87(0.16) 0.98(0.01) 0.97(0.01)
GLCM 0.96(0.05) 0.99(0.00) 0.92(0.11) 0.99(0.00) 0.99(0.00)
GLDM 0.96(0.03) 0.98(0.02) 0.94(0.06) 0.98(0.01) 0.99(0.00)
GLRLM 0.91(0.05) 0.94(0.05) 0.89(0.11) 0.97(0.01) 0.95(0.04)
GLSZM 0.97(0.02) 0.97(0.02) 0.97(0.05) 0.99(0.00) 0.99(0.00)
NGTDM 0.91(0.06) 0.94(0.04) 0.88(0.13) 0.94(0.03) 0.95(0.03)
Train LR F-order 0.97(0.00) 0.9v(0.00) 0.9°(0.00) 0.97(0.00) 0.99(0.00)
GLCM 0.96(0.00) 0.98(0.00) 0.94(0.00) 0.98(0.00) 0.99(0.00)
GLDM 0.96(0.00) 0.98(0.00) 0.95(0.00) 0.98(0.00) 0.99(0.00)
GLRLM 0.90(0.00) 0.90(0.00) 0.91(0.00) 0.97(0.00) 0.96(0.00)
GLSZM 0.98(0.00) 0.98(0.00) 0.97(0.00) 0.99(0.00) 0.99(0.00)
NGTDM 0.91(0.00) 0.94(0.00) 0.87(0.01) 0.94(0.00) 0.97(0.00)
Test F-order 0.92(0.08) 0.94(0.03) 0.88(0.15) 0.97(0.02) 0.98(0.0+)
GLCM 0.96(0.05) 0.99(0.01) 0.93(0.10) 0.98(0.01) 0.99(0.01)
GLDM 0.96(0.04) 0.97(0.04) 0.95(0.06) 0.98(0.01) 0.99(0.00)
GLRLM 0.90(0.06) 0.91(0.06) 0.90(0.10) 0.97(0.02) 0.96(0.03)
GLSZM 0.98(0.02) 0.98(0.01) 0.97(0.05) 0.99(0.00) 0.99(0.00)
NGTDM 0.91(0.06) 0.94(0.04) 0.87(0.13) 0.94(0.03) 0.97(0.03)

AUC (Area under the curve), F-order (First Order), GLCM (Gray Level Co-Occurrence Matrix), GLDM (Gray Level Dependence Matrix), GLRLM (Gray
Level Run-Length Matrix), GLSZM (Gray-Level Size Zone Matrix), HCs (Healthy Controls), NGTDM (Neighboring Gray Tone Difference Matrix)

Table 6. Classification (healthy controls, patients) performance indices by logistic regression (LR) for each group of features. Mean (Standard Deviation)

values are shown

Datasets Classifier Feature categories Accuracy Precision Recall (Sensitivity) Specificity AUC

Test LR F-order 0.95(0.01) 0.96(0.02) 0.94(0.03) 0.99(0.00) 0.99(0.00)
GLCM 0.96(0.01) 0.98(0.01) 0.94(0.02) 0.98(0.00) 0.96(0.01)
GLDM 0.96(0.01) 0.9v(0.01) 0.95(0.02) 0.99(0.00) 0.98(0.01)
GLRLM 0.89(0.02) 0.90(0.02) 0.89(0.04) 0.95(0.01) 0.96(0.02)
GLSZM 0.97(0.01) 0.98(0.01) 0.97(0.01) 1(0.00) 0.97(0.01)
NGTDM 0.90(0.01) 0.93(0.03) 0.86(0.03) 0.97(0.01) 0.92(0.01)

Validation F-order 0.96(0.01) 0.96(0.02) 0.95(0.01) 0.98(0.01) 0.99(0.01)
GLCM 0.96(0.01) 0.99(0.00) 0.93(0.02) 0.99(0.01) 0.96(0.01)
GLDM 0.97(0.01) 0.9v(0.01) 0.95(0.02) 0.97(0.01) 0.98(0.01)
GLRLM 0.90(0.02) 0.91(0.03) 0.89(0.03) 0.91(0.02) 0.96(0.02)
GLSZM 0.98(0.00) 0.98(0.00) 0.98(0.01) 0.99(0.00) 0.96(0.00)
NGTDM 0.92(0.02) 0.96(0.01) 0.87(0.04) 0.95(0.01) 0.91(0.01)

AUC (Area under the curve), F-order (First Order), GLCM (Gray Level Co-Occurrence Matrix), GLDM (Gray Level Dependence Matrix), GLRLM (Gray
Level Run-Length Matrix), GLSZM (Gray-Level Size Zone Matrix), HCs (Healthy Controls), NGTDM (Neighboring Gray Tone Difference Matrix)

Discussion

Epilepsy affects about 1% of the global population,
and identifying the EZ accurately is critical for
successful surgical outcomes in DRE [26-28]. F-FDG
PET plays a key role in presurgical evaluation by
revealing metabolic abnormalities that correlate with
seizure onset zones and surgical prognosis [29-31].
However, conventional visual assessment of PET
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images is often subjective and highly dependent on
physician expertise, making subtle abnormalities
difficult to detect [13, 32-34]. Recent advances in Al
and ML have shown great promise in enhancing
diagnostic precision, reducing observer variability, and
supporting novice physicians in clinical decision-
making [23, 35-38].
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We applied radiomics analysis of '*F-FDG brain
PET images to classify DRE patients and HCs. To
identify the most informative features, we excluded
those with significant differences between contralateral
ROIs in HCs (p < 0.05) and non-significant differences
in patients (p > 0.05), followed by principal component
analysis (PCA) and ridge regression to minimize
redundancy and multicollinearity (Table 4).

SVM and LR were evaluated using stratified 10—fold
CV for each feature group. Given the exploratory nature
of this work, confidence intervals and hypothesis testing
were omitted to emphasize model feasibility and
performance metrics calculated through robust 10—fold
CV [25].

As shown in Table 5, both LR and SVM achieved
high and comparable performance across all feature
groups (AUC = 0.95-0.99), confirming their strong
discriminative ability.

Table 3 shows visual assessments by two novice NM
physicians achieved moderate accuracy (0.62-0.67,
AUC = 0.80-0.83) due to limited recall. In contrast,
radiomics-based ML models (LR and SVM) reached
mean AUC = 0.98 = 0.00 (Table 5), confirming their
superior reliability and value for less-experienced
clinicians.

Permutation testing showed no significant AUC
differences between LR and SVM (Table 5 and Figure
4), supporting the choice of LR as the final model for its
interpretability and efficiency. The dataset was split into
80-20 training-testing subsets, and 80-20 training—
validation subsets, repeated 10 times.

Table 6 represents promising performances for the
test dataset. These findings suggest that the choice of
radiomics feature group can substantially influence
model performance. F-order features achieved the
highest AUC (0.99+0.00), indicating strong
discriminative power for distinguishing patients with
epilepsy from HCs, outperforming features like
NGTDM. Additionally, GLSZM features effectively
captured spatial heterogeneity in glucose uptake, with
metrics such as Large Area High Gray Level Emphasis
contributing to the classification of epileptogenic
regions. Although interictal PET imaging typically
reveals hypometabolism, this feature may reflect subtle
regional asymmetries or relatively preserved glucose
intensities that were informative for distinguishing DRE
patients from HCs.

The AUC values for the classification of patients
and HCs based on the visualizations implemented by the
two novice NM physicians, referred to as Visualizationl
and Visualization2 (shown in Figure 5), were 0.8 and
0.825, respectively. Radiomics-based ML models
significantly outperformed novice physicians (AUC =
0.98 vs. 0.81), demonstrating superior reliability and
sensitivity for DRE classification.

Among feature groups, NGTDM had the lowest
AUC =0.92 + 0.01, and F-order the highest AUC= 0.99
+ 0.00, both outperforming novice visualizations (mean
AUC = 0.81). Thus, for classifying DRE and HCs,
besides physicians’ visual interpretations, it can be
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helpful to define suspected contralateral brain lobes and
implement such radiomics-based LR models to boost the
diagnosis accuracy.

This study demonstrated that radiomics-based ML
models significantly outperformed novice visual
assessments in classifying DRE patients and HCs from
F-FDG brain PET images.

The LR model achieved a mean + SD AUC of 0.96 +
0.01, outperforming novice NM physicians (AUC: 0.80-
0.825) (Table 3, Figure 5). Despite achieving high
specificity and precision in the visual assessments, their
moderate accuracy highlights limitations in identifying
all affected patients. This underscores the potential
value of radiomics models as adjunct tools, offering
consistent sensitivity while maintaining interpretability.
This gap highlights radiomics’ ability to detect subtle
metabolic asymmetries (e.g., in [GLSZM] features) that
novices often overlook, directly addressing the study’s
goal of reducing diagnostic variability.

Mean values of precision (0.95 + 0.01) and recall
(0.95 £ 0.01) among the six feature categories indicate
the model minimizes both false positives (misclassifying
HCs) and false negatives (missing DRE cases), critical
for avoiding unnecessary invasive procedures or delayed
surgeries.

In addition to accuracy, precision, recall, and AUC,
we emphasized specificity for its key role in correctly
identifying HCs and minimizing false positives.
Including this metric provided a more balanced
evaluation of model performance, enhancing
interpretability and clinical relevance in distinguishing
DRE patients from HCs.

Radiomics-based ML models complement visual
assessments by offering quantitative, objective insights
that improve diagnostic accuracy and confidence—
especially for novice physicians. They also accelerate
image analysis, reduce observer variability, and
streamline decision-making in presurgical evaluations.

Integrating radiomics-based ML into clinical
workflows remains challenging due to inter-scanner
variability, need for standardized preprocessing, and
limited computational or technical resources in some
settings. The "black-box™" nature of these models can
make it difficult for clinicians to trust and adopt them
without clear explanations or visual aids.

Obtaining regulatory approval for ML tools in
healthcare can be a long and resource-intensive process,
requiring thorough validation. Clinicians also need
training to use the tool effectively, and there may be
resistance to new technologies. Further validation across
diverse patient demographics and imaging centers is
necessary to ensure the model's generalizability and
reduce biases. Seamless integration with existing
clinical systems is needed to avoid disrupting current
practices. Addressing data privacy, security, and
accountability in case of diagnostic errors is essential for
compliance with ethical and legal standards.

Our high-performing ML models (LR, SVM) align
with Hao et al. [39] and Liao et al. [40], ], though prior
work mainly used MRI rather than PET-based
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biomarkers. Compared to these works, our study
provides novel evidence that PET-based radiomics can
achieve superior classification performance. Hao et al.
focused on localizing the epileptogenic zone using
radiomics features from ¥F-FDG PET images [39].
Their model achieved a mean + SD accuracy of 0.84 +
0.03, sensitivity of 0.78 £ 0.13, specificity of 0.84 *
0.04, and a mean AUC of 0.89 + 0.05 in identifying the
epileptogenic zone in TLE patients. In the study by
Liao et al. a radiomics-based ML model utilizing 8F-
FDG PET features achieved an accuracy of 0.948
sensitivity of 0.941 precision of 0.985, and an AUC of
0.984 in distinguishing temporal lobe epilepsy (TLE)
patients from healthy controls [40]. Above mentioned
studies achieved a high AUC for distinguishing between
patients with temporal lobe epilepsy and healthy
individuals using a radiomics-based ML model based on
BE-FDG brain PET images. To review some studies
exploring the use of radiomics in epilepsy as a central
nervous system disease, in 2018, Liu et al. successfully
developed and validated a prediction model for
accurately predicting epilepsy incidence in low-grade
glioma patients. The model demonstrated an accuracy of
0.793 in the primary cohort and 0.75 in the validation
cohort, with an AUC of 0.875 for the primary cohort
and 0.816 for the validation cohort.[19]. In 2019, Mo et
al. presented a computational model that utilizes high-
throughput radiomics features for the detection of MRI-
negative hippocampal sclerosis as a histopathological
hallmark and major underlying cause of temporal lobe
epilepsy. They achieved an accuracy of 0.958,
sensitivity of 0.963, specificity of 0.956, and AUCs of
0.997 in the primary cohort and 0.978 in the validation
cohort [16]. In 2019, Zhuang et al. investigated the
predictors of epilepsy presentation in unruptured brain
arteriovenous  malformations  (bAVMs)  through
quantitative evaluation of location and radiomics
features on T2-weighted imaging. They found that
epilepsy-susceptible bAVMs exhibited distinct locations
and radiomics features on T2-weighted imaging. The
predictive score demonstrated an accuracy of 0.822 in
the training dataset and 0.778 in the test dataset. The
AUC was 0.866 with a 95% confidence interval of
0.791-0.940. On the training dataset, the sensitivity was
0.800 and the specificity was 0.850. On the test dataset,
the sensitivity was 0.786, the specificity was 0.769 [41].
In 2021, Cheong et al. discovered significant differences
in radiomics features between the affected and
unaffected sides of patients with temporal lobe epilepsy
(TLE). They found that radiomics analysis not only
revealed abnormalities in the extrahippocampal regions
of the affected side in TLE patients but also had the
potential to identify MRI-negative cases of TLE. The
extrahippocampal model achieved an AUC of 0.97
(95% CI, 0.94-1.00) on the training set, 0.90 (95% ClI,
0.86-0.93) on the internal validation set, and 0.92 (95%
Cl, 0.86-0.98) on the external validation set. For the
external validation, it showed a sensitivity of 0.92 and a
specificity of 0.96 [42]. In a study in 2021, Gao et al.
explored the relationship between radiomics features
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and frontal glioma-associated epilepsy (GAE) and
developed a robust radiomics-based model for
predicting frontal GAE. Their findings indicate that
radiomics analysis can effectively predict GAE without
invasive procedures, enabling more accurate treatment
planning for frontal glioma. Their proposed clinical-
radiomics model holds promise for the precise
prediction of frontal GAE. They achieved an accuracy
of 0.82 sensitivity of 0.803 specificity of 0.840, and
AUCs of 0.886 (0.819-0.940) in the training cohort and
an accuracy of 0.782, sensitivity of 0.75, specificity of
0.815, and AUCs of 0.836 (0.707-0.937) in the test
cohort [43].

Limitations and Future Work

This study has several limitations to consider. First,
using PET data from two centers may have introduced
variability due to differences in acquisition protocols
and patient populations, even though both sites used the
same scanner model. Although we applied standardized
preprocessing steps, such as resampling, intensity
normalization, and exclusion of asymmetric features in
HCs, we did not formally harmonize inter-center
variations. ComBat harmonization was not applied due
to differing cohort distributions; future multi-site studies
should assess and mitigate inter-center effects.

Second, all ROI delineations were determined based
on expert consensus between two NM physicians to
ensure consistency and reduce subjective variability.
The segmentation was performed manually by an
experienced professional and independently reviewed in
a blinded manner by a senior NM specialist to validate
accuracy and adherence to standardized anatomical
guidelines. Although consistent, no formal rater-
agreement metrics were computed; future work will
include reproducibility analyses (e.g., Dice coefficient
or ICC) and explore automated or semi-automated
segmentation methods such as deep learning to improve
standardization and reduce observer bias.

Third, although a combined-feature model using
PCA was explored, it was excluded from the main
analysis due to limited interpretability. Instead, we
evaluated models based on individual feature groups to
emphasize their distinct contributions. Future studies
should consider advanced feature fusion techniques to
enhance classification robustness while preserving
explainability.

Finally, the small sample size limited subgroup
analyses. Larger, multi-center studies are needed to
validate findings and assess radiomics patterns across
clinical subtypes.

Conclusion

In conclusion, the analysis reveals that ¥F-FDG
brain PET radiomics-based ML models can serve as a
complementary tool to enhance diagnostic accuracy in
classifying patients and HCs during the pre-surgical
evaluation of DRE patients. In addition to visual
interpretations, when physicians delineate suspected
contralateral brain lobes and apply the radiomics-based
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ML models, it enhances diagnostic accuracy, especially
benefiting  less-experienced  physicians.  These
radiomics-based ML models leverage quantitative
imaging data to extract meaningful features, offering
valuable insights that support more informed clinical
decision-making. However, further validation and
refinement of the models are essential to fully realize
their potential and establish their clinical utility in
enhancing the management of DRE.
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