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Introduction: Current deep learning-based computer-aided diagnosis (CAD) techniques face challenges in 
hierarchical feature extraction and computational efficiency. Traditional convolutional neural networks 
(CNN) often focus on local or single-scale information, neglecting global correlations of brain atrophy and 
multiscale pathological features. Additionally, the parameter explosion problem in deep networks limits 
model's generalization ability on small and medium-sized datasets. While the introduction of attention 
mechanisms has significantly improved feature extraction and enhanced CNN recognition capabilities, 
existing attention mechanisms are mostly single-scale, focusing on feature maps at specific hierarchical 
levels and ignoring the correlations between features of different layers. 
Material and Methods: To address these issues, this study proposes a lightweight model combining a 
shallow feature pyramid CNN with a Dual Multi-level Attention (DMA) mechanism. Experiments using the 
public OASIS-1 dataset, which contains 86,437 MRI images across 4 categories, employ a focal loss function 
to handle class imbalance.  
Results: The results show that the model including DMA outperforms both the baseline CNN and the single-
scale attention mechanism in terms of accuracy (ACC), sensitivity (SEN), and specificity (SPE). Specifically, 
compared to CNN and CNN+CBAM: ACC improved by 3.33% and 1.26%, SEN improved by 13.2% and 
0.9%, and SPE improved by 1%. 
Conclusion: The model demonstrates significant advantages in distinguishing small-sample classes and 
differentiating between very mild dementia and normal controls, highlighting its superiority in fine-grained 
pathological discrimination. 
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Introduction 
Alzheimer’s Disease (AD), the most common 

neurodegenerative disease, is characterized by 
progressive brain atrophy, β-Amyloid deposition, and 
neurofibrillary tangles, leading to irreversible 
cognitive decline. It ranks fifth in the global mortality 
list, causing a large number of deaths annually [1-2]. 
As a persistent neurodegenerative brain disorder, AD 
causes progressive destruction of brain cells after 
onset, leading to memory loss, cognitive impairment, 
and an accelerated decline in the ability to perform 
daily living activities [3-4].  

AD is fatal and incurable at present. Patients not 
only endure lifelong physical suffering, but their 
families also bear a heavy burden, encompassing 
economic pressures and enormous mental and 
physical tolls [4]. Additionally, it imposes a significant 
burden on global healthcare systems [5]. Accurate 
early diagnosis is crucial for intervening in disease 
progression [6], and magnetic resonance imaging 
(MRI), with its advantages of non-invasiveness and 
high resolution, has become a core tool for capturing 

subtle structural changes in the AD brain, such as 
hippocampal atrophy and cortical thinning [7-8].  

In recent years, deep learning-based computer-
aided diagnosis (CAD) technologies have shown great 
potential in MRI analysis [9-13]. However, existing 
methods still face two key challenges: one-sidedness 
in feature extraction and limitations in computational 
efficiency. Convolutional neural networks extract 
features through multiple convolutional layers, but 
they often focus on local regions (such as the 
hippocampus and entorhinal cortex) or single-scale 
information, neglecting the global correlations of 
brain atrophy and multi-scale pathological features 
[14]. Additionally, AD MRI data often exhibit class 
imbalance (significant differences between mild 
cognitive impairment (MCI) and normal control (CN) 
samples), leading to insufficient learning ability for 
early lesion features in models. On the other hand, the 
parameter explosion problem in deep networks 
exacerbates computational resource consumption and 
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limits the generalization ability of models on small 
and medium-sized datasets.  

The introduction of attention mechanisms has 
significantly enhanced the feature representation 
capabilities of medical image analysis models. The 
classic Convolutional Block Attention Module [15] 
(CBAM) enhances the model's focus on key regions by 
jointly optimizing channel [16] and spatial attention 
[17]. However, existing methods typically rely on 
single-scale feature design, neglecting the correlations 
between features at different hierarchical levels. 
Existing methods fail to fully leverage the advantages 
of multi-scale feature fusion and cannot utilize 
features at different scales, leading to limited 
generalization ability in complex scenarios. The size of 
the dataset also imposes constraints on model 
performance—for smaller datasets, more complex 
models may suffer from overfitting, resulting in 
decreased generalization ability in feature extraction. 
Additionally, traditional attention mechanisms often 
generate redundancy or cause information loss when 
processing multi-scale features, making it difficult to 
adapt to the heterogeneous manifestations of AD 
lesions at different resolutions.  

Based on the above problems, this paper proposes 
a new model of shallow feature pyramid CNN 
combined with a DMA [18] based on the public OASIS-
1dataset [19]: 

(1) The model adopts a shallow feature pyramid 
CNN network to reduce the computational 
redundancy, reduce the computational complexity of 
the model, extract the image features in different scale 
directions, and realize the full use of the image feature 
information. 

(2) The DMA module used reduces one channel of 
the module according to the network structure, 
reduces the number of weights that the module needs 
to calculate, and makes the whole network lightweight. 

(3) The DMA module realizes the prominence of 
important features extracted from non-scale features 
of the convolution block through weighting, and 
splices and fuses the prominent important features of 
different scales in the subsequent process, which 
enhances the ability of the model to extract and 
identify features. 

Experimental results show that the new model 
significantly improves the discrimination ability of 
small sample categories and early lesions. 

In this section, we will briefly introduce the 
previous research on CAD methods for AD, the 
research progress of CNN architecture and attention 
mechanism in AD classification, analyze the technical 
bottlenecks of existing methods, and propose the 
innovative direction of this research.  

The core challenge of lightweight CNN in the 
medical imaging field lies in balancing computational 
efficiency and feature representation capability, 
especially when AD pathological features exhibit 
multi-scale and high-dimensional characteristics. 

MobileNetV2 [10] reduces the number of parameters 
to 5.3 million through depth wise separable 
convolutions, but it fails to achieve high classification 
accuracy on the ADNI dataset [20]. Its bottleneck 
stems from the fact that depth wise separable 
convolutions weaken inter-channel information 
interaction, leading to insufficient sensitivity to subtle 
structural changes such as hippocampal atrophy. The 
study in [11] optimizes computational complexity 
through channel shuffling and grouped convolutions, 
but the receptive field of its model in AD classification 
only covers a 16×16 pixel region, making it difficult to 
capture the global patterns of whole-brain cortical 
thickness changes. Tan et al. [12] used the B0 model 
with compound scaling design to achieve an AUC 
value of 0.892 in AD classification, but the lack of 
attention mechanism guidance results in insufficient 
suppression of non-salient features such as 
ventricular enlargement. 

The introduction of attentional mechanisms 
improves the accuracy of deep learning in recognizing 
Alzheimer's disease. Woo et al. [15] embedded CBAM 
into ResNet-50, constructing channel attention maps 
via global average pooling and multi-layer 
perceptrons, and combined spatial attention kernels 
to improve feature focusing ability. This approach 
increased the AUC for AD classification from 0.901 to 
0.934. However, in lightweight networks, CBAM 
introduces an additional 1.2 million parameters, 
leading to a 28% increase in floating-point operations 
and higher inference latency, which struggles to meet 
real-time diagnostic requirements. Limitation of 
single-scale attention [15-17]: Existing studies only 
apply attention mechanisms to deep feature maps, 
neglecting the collaborative optimization between 
anatomical details in shallow features (e.g., entorhinal 
cortex thickness) and global patterns in deep features 
(e.g. cortical atrophy distribution). The DMA 
mechanism [18] consists of multi-layer channel 
attention (MCA) and multi-layer spatial attention 
(MSA) modules. By calculating attention in channel 
and spatial dimensions for feature maps of different 
scales, it achieves feature screening and weighting, 
thereby improving model performance. 

 

Materials and Methods 
Dataset 

The dataset used in this study was sourced from the 

publicly available OASIS-1 dataset [19], which 
comprises a cross-sectional sample of 416 participants 
aged 18 to 96 years. The dataset comprises 86437 brain 
MRI images, which are classified into four categories 
according to the progression of Alzheimer’s Disease. 
Based on the provided metadata and clinical dementia 
rating values, the patient dataset was categorized into 

four groups: Mild Dementia （ Mild ） ,Moderate 

Dementia（Moderate） , Non-Demented（Non）and 

Very Mild Dementia（Very Mild）as shown in Figure 
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1. This allows for the detection and study of different 
stages of Alzheimer’s Disease progression, providing a 
valuable resource for analyzing and detecting early signs 
of the disease. Table 1 describes the distribution of 
images for each category. 

 
Table 1. OASIS-1 dataset distribution 
 

No. Class Images OASIS-1 

0 Mild Dementia 5002 
1 Moderate Dementia 488 
2 Non Demented 67222 
3 Very Mild Dementia 13725 

 

Model Structure 
The model proposed in this paper takes the shallow 

feature pyramid CNN network combined with the DMA 
module (Figure 2) as its core components. The input 
channels of the four convolution blocks (Figure 2) are 
set as 16, 32, 64, and 128 in a progressively increasing 
order. This design of progressively increasing channel 
numbers across multiple layers allows the network to 
deeply analyze MRI images at multiple levels from local 
to global, thereby capturing both subtle features in fine 
details and macroscopic characteristics from a global 
perspective. After each convolution block completes 
feature extraction, the output feature maps are 
sequentially stored to construct a multi-scale feature 
stack with channel identifiers (16, 32, 64, 128). This 
feature stack is then input into the DMA attention 
module, where key information is effectively 
highlighted through precise weighting of important 
features. Concatenation and fusion operations efficiently 
integrate multi-scale features, making the processed 
feature information richer and more comprehensive. 
Finally, the finely processed feature information is 
mapped to a fully connected layer, which realizes the 
four-class classification of MRI images through 
comprehensive processing. 

Each convolutional block consists of two 3×3 
convolutional layers, batch normalization layers, a max 
pooling layer, two RELU activation functions, and a 
Dropout layer. The first convolutional layer extracts 
initial features, followed by the first batch normalization 
and first RELU activation function, which normalize the 
initial features (such as edges and corners) and apply 
sufficient non-linear activation to form basic features. 
The second convolutional layer extracts combined 
features, and the subsequent second batch normalization 
and second RELU activation function normalize the 
textures, shapes, and other attributes of these combined 
features while applying non-linear activation. This 
process stabilizes the feature distribution after the two 
convolutional layers, preventing drastic changes in the 
input distribution of the second layer caused by the 
sparsity of the first RELU activation. 

Non-linear activation using RELU is defined as: 

,

( ) ( ) (

, , , , ,

)( ) ( )0,n n n

i j k i j k i j kA ReLU F max F 
              (1) 

 
For the output feature map of the convolutional layer 

,

(

,

)n

i j kF
 , where n denotes the n-th convolutional 

block, 
( ),i j

 represents the spatial location, and k is the 
channel index. 

Using max pooling to reduce the spatial dimensions 
of the feature map, retain local maxima (salient features), 
and enhance translation invariance, it is defined as: 

, , , ,

( ) ( ){ ( ) },n n
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             (2) 

 
The pooling window size is 2×2. For the input 

feature map ,

(

,

)n

i j kA
, the output after pooling is ,

(

,

)n

i j kP   , 

where
( ),i j

represents the spatial location after pooling. 

 

 
 
Figure 1. Example of image Samples 4 classes from the OASIS-1 dataset. 
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Figure 2. The shallow feature pyramid CNN +Dual Multi-level Attention [16] modules. 

 
The first 3×3 convolutional layer extracts initial 

features, capturing local information such as simple 
edges and lines. Subsequently, the first batch 
normalization layer normalizes these initial features, 
adjusting their mean and variance to stabilize the feature 
distribution and accelerate model training convergence. 
Immediately after, the first RELU activation function 
applies a nonlinear transformation to the features, 
highlighting positive values and suppressing negative 
values to fully activate information such as edges and 
corners, forming basic features. The second 3×3 
convolutional layer extracts combined features on this 
basis, capturing more advanced textures, shapes, etc. 
Subsequently, the second batch normalization layer 
normalizes the features again, stabilizing the feature 
distribution after the two convolutional layers and 
alleviating the problem of drastic changes in the input 
distribution of the second layer caused by the sparsity of 
the first RELU (where some neurons output zero), thus 
avoiding instability in model training. Then, the second 
RELU activation function further applies nonlinear 

activation to the textures, shapes, and other attributes of 
the combined features, enhancing the feature 
representation ability and enabling the model to better 
capture complex patterns. Finally, the max pooling layer 
reduces the spatial dimensions of the feature map 
through down sampling, lowering computational 
complexity while retaining important features; the 
Dropout layer randomly discards some neurons during 
training to prevent overfitting and enhance the model's 
generalization ability. 

 

Dual Multi-Level Attention (DMA) 
The DMA [16] mechanism enhances feature 

representation capabilities through cross-scale 
interactions in channel and spatial dimensions. By 
employing feature attention methods that integrate the 
channel and spatial domains, it deeply delves into the 
mechanism of attention from local to global scales, 
improving the model's diagnostic performance. DMA is 
constructed by cascading the Multi-Level Channel 
Attention and Multi-Level Spatial Attention modules 
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(Figure 2), sequentially optimizing attention in the 
channel and spatial domains for multi-scale features. In 
the MCA module, for the input feature list of different 
scales (feature maps with 16, 32, 64, 128 channels), 
global adaptive average pooling is first applied 
independently to each scale of features to compress the 
spatial dimensions into 1×1 while preserving channel 
dimension information. Subsequently, a bottleneck 
structure composed of two 1×1 convolutions (with a 
reduction factor) is used for channel importance 
modeling: the first convolution reduces the number of 
channels to max(in_channels /reduction, 1) and activates 
it with ReLU, and the second convolution restores the 
original number of channels to generate channel-wise 
attention weights. After concatenating the attention 
weights of each scale along the channel dimension, 
global SoftMax is used for cross-scale normalization to 
make the channel weights of different scales globally 
comparable. Finally, the weights are split according to 
the original number of channels, and element-wise 
multiplied back to the feature maps of the corresponding 
scales to complete the cross-scale fusion of channel 
attention. The MSA module focuses on cross-scale 
interactions of spatial attention. For each scale of 
features, average pooling and max pooling features are 
first calculated separately, concatenated along the 
channel dimension, and then input into a 7×7 
convolution to generate a single-channel spatial 
attention map. To achieve cross-scale interaction, the 
attention maps of each scale are cropped to the spatial 
size (H, W) of the first scale and concatenated, then 
activated by a Sigmoid function to generate a global 
spatial attention map. Subsequently, the attention map is 
split into single channels, cropped back to the original 
scale's spatial size, and element-wise multiplied back to 
the corresponding feature maps, realizing multi-scale 
alignment and weighting of spatial attention. The DMA 
mechanism establishes cross-domain dependency 
relationships among features of different scales through 
channel-first then spatial attention hierarchical 
processing, effectively enhancing key feature 
representations and providing more discriminative 
feature inputs for subsequent classification tasks. 

Global Adaptive Average Pooling is defined as: 
 

1 1 , , , [ ] [ ]
1

1, , 1,H W

c i j n c i j ny X N c C
H W

      
          (3) 

 

For an input feature map 
N C H WX R     (where N is 

the batch size, C is the number of channels, 
and H×W are the spatial dimensions), the output result 

is 
1 1N CY R    , which represents the average value of 

pixel values at all spatial positions for each channel. 

 

Classification Module 
As shown in Figure 2, in the classification module, 

the first fully connected layer performs a linear 
transformation on the output of weighted feature fusion 
to preprocess the features. The second fully connected 

layer, after being processed by the SILU activation 
function and Dropout, maps the features to the 
classification dimension and outputs class scores, 
thereby providing the basis for the final classification 
decision. 

The SILU (Sigmoid Linear Unit) activation function 
is a self-gated activation function. Compared to ReLU, 
it enables the model to learn more complex patterns and 
has desirable properties such as smoothness and non-
monotonicity, which help improve model performance. 
It is defined as: 

(
1

1
)

x
SILU x x

e
 

                                             (4) 
x is the output of the first fully connected layer. By 

using x as the input to SILU, this design helps better 
enhance the model's generalization capability. 

 

Loss Function 
To enhance the discriminative ability of multi-level 

dementia classification, the Focal Loss function is 
employed to optimize the model's training process. 
Addressing the class imbalance issue in the dataset, this 
loss function introduces a focus parameter γ and class 
balance factor α based on cross-entropy, dynamically 
adjusting the training weights of different samples. The 
final definition of Focal Loss is: 

( ) ( )1
xy

loss t x

j

e
F p log

e j

    


                             (5) 

 tp
 is the prediction confidence, which reflects the 

difficulty level of samples, and is defined as: 

( )
xy

x
j

e
log

e j

tp e





                                            (6) 
The Focal Loss function enables the model to 

allocate more training attention to confusable early-
stage lesions (such as Mild Dementia and Moderate 
Dementia) and small-sample classes in the dementia 
grading task, significantly improving the clinical 
accuracy of classification. 
 

Results 
Experimental Environment 

Table 2 shows the experimental equipment 

experimental environment and model parameters in this 

paper, and the Adam optimizer is used for network training. 

The experimental dataset consisted of 86,437 images that 

were divided into subsets at a scale of 0.85:0.2:0.15. 

 
Table 2. Experimental Setting 
 

Parameter Setting 

GPU NVIDIA GeForce RTX 4060 Ti 8 GB 

PyTorch 2.5.0 

Python 3.11 

Learning Rate 1×10⁻⁴ 

Epochs 40 

Batch Size 32 
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Evaluation Metrics 

This paper uses common evaluation metrics to 

comprehensively assess the effectiveness of the proposed 

model. These metrics include Specificity (SPE), 

Sensitivity (SEN), Accuracy (ACC), Recall, F1-Score, 

and the Area Under the ROC Curve (AUC).  

Definitions for some of the metrics in the experiment 

are provided below:

TN
SPE =

TN+FP ，

TP
REcall = SEN=

TP+FN ，and

TP+TN
ACC =

TP+TN+FN+FP ，In the formula, TP represents true 

positives, FN represents false negatives, TN represents 

true negatives, and FP represents false positives. AUC 

(Area Under the ROC Curve) is calculated based on the 

False Positive Rate (FPR =1 − SPE) and True Positive 

Rate (TPR = SEN). 

 

 

 

 

Experiment 

In order to verify that multi-scale DMA attention can 

better improve the recognition ability of the model than 

single-scale attention, we conducted a comparative 

experiment based on the CNN model used in the 

experiment and the single-scale attention CBAM. The 

experimental results are presented in Table 3. 

As shown in Table 3, shallow CNN+DMA is superior 

to shallow CNN and CBAM single-scale attention. The 

model improved the recognition rate ACC for the entire 

dataset by 3.3% and 1.3%, respectively, compared to the 

two baselines. This improvement reflects the new model's 

ability to effectively identify and classify data features, 

thereby improving the overall classification accuracy. 

Recognition rates were also significantly improved in four 

categories compared to CNN and CNN+CBAM: 5% and 2% 

for the mild category, 18% and 2% for the moderate 

category, 4% for the non-category, and 5% and 6% for the 

very mild category. Other indicators also improved by 2% 

to 12% in each of the four types of identification categories.  

 
Table 3. The evaluation metrics of the three models under different categories of data. 

 

Model Category ACC Precision Recall F1-Score Support 

CNN 

Mild 

0.915 

0.94 0.65 0.78 1238 

Moderate 0.82 0.71 0.82 121 

Non 0.91 0.98 0.95 16638 

Very Mild 0.89 0.66 0.76 3397 

CNN+CBAM 

Mild 

0.935 

0.97 0.76 0.84 1238 

Moderate 0.98 0.77 0.79 121 

Non 0.95 0.98 0.96 16638 

Very Mild 0.88 0.79 0.83 3397 

CNN+DMA 

(Ours) 

Mild 

0.948 

0.99 0.77 0.86 1238 

Moderate 1.00 0.76 0.86 121 

Non 0.95 0.99 0.97 16638 

Very Mild 0.94 0.80 0.87 3397 

Special note: Since the data of the Mild class and the Moderate class is much smaller than that of the other two classes, the recognition accuracy of these two 
categories is very high on the model.  

The ACC parameter in the table is the accuracy of the model over the entire dataset. 

 

 
 
Figure 3.  Evaluation results of ACC, SPE, and SEN for the three models on the entire dataset. 
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As shown in Figure 3, the model that introduced the 

attention mechanism stood out among the ACC, SEN, and 

SPE evaluation results of the three models (CNN, 

CNN+CBAM, CNN+DMA) across the entire dataset. 

Specifically, in the ACC metrics, the CNN is 0.9151, the 

CNN+CBAM is 0.9358, and the CNN+DMA reaches 

0.9484, representing a 3.33% improvement compared to 

the CNN and a 1.26% increase over the CNN+CBAM. In 

terms of SEN metrics, CNN+DMA improved by 13.2% 

over CNN, while CNN+CBAM improved by 0.9%. In 

terms of SPE metrics, CNN+DMA increased by 1% 

compared to CNN+CBAM. These data clearly show that 

the accuracy, sensitivity, and specificity of the model in 

multi-classification tasks are significantly improved after 

the introduction of attention mechanisms in the underlying 

shallow feature pyramid CNN, especially the CNN+DMA 

model, which outperforms shallow CNN and CBAM on all 

metrics. 
 

 
 

Figure 4.  ROC classification curves of the three models for the entire 

dataset. 

 

Figure 4 shows the ROC classification curve and area 

under the curve (AUC) for the entire dataset for the three 

models (CNN (AUC = 0.959), CNN+CBAM (AUC = 

0.974), and CNN+DMA (AUC = 0.986)), as well as the 

dashed line representing random guessing. Among them, 

the AUC of the CNN+DMA model was 0.986, which was 

significantly greater than that of the other two models 

(CNN and CNN+CBAM). Experiments have confirmed 

that the multi-scale attention mechanism can effectively 

enhance the feature representation and enhance the 

discrimination ability of complex lesions, especially in 

scenes of sample imbalance and small sample size. 

Therefore, this mechanism is an effective solution to 

optimize medical imaging diagnostic models, and provides 

a powerful strategy to solve the inherent challenges in 

medical image analysis.  

The confusion matrix in Figure 5 shows the prediction 

results for the four classifications (Mild Dementia, 

Moderate Dementia, No Dementia, and Very Mild 

Dementia). 21,393 images from 15% of the dataset were 

used as a test set to validate the predictive categorization of 

the best model. The test set consisted of a total of 21,393 

images, of which 1,167 images were from the Mild class, 

125 images were from the Moderate class, and Non class 

had 16716 images, and 3,385 images were from the Very 

Mild class. As can be seen from the figure, since the dataset 

samples in the moderate dementia category are very few 

compared to the other categories, it achieves a completely 

correct prediction, and the other three categories are also 

predicted correctly at more than 95%, with only a small 

number of samples with misclassification, it can be 

obtained that the model performs well in predicting the 

diagnosis of dementia. 

 

 
 

Figure 5.  Four types of prediction outcome confusion matrices. 

 
 

Discussion 
This study successfully addresses two critical 

challenges in deep learning-based Alzheimer's disease 
classification: one-sided feature extraction and 
computational efficiency limitations. Our proposed 
model, combining a shallow feature pyramid CNN with 
a dual multi-level attention (DMA) mechanism, 
achieved an overall accuracy of 94.84% on the OASIS-1 
dataset, representing a 3.33% improvement over the 
baseline CNN and a 1.26% improvement over 
CNN+CBAM. More importantly, the model 
demonstrated substantial gains in sensitivity (13.2% 
over CNN, 0.9% over CNN+CBAM) and maintained 
high specificity (1% improvement over CNN+CBAM), 
with an AUC of 0.986. 

The experimental results validate our hypothesis that 
multi-scale attention mechanisms can more effectively 
capture the heterogeneous manifestations of AD 
pathology across different spatial resolutions. 
Traditional CNNs and even single-scale attention 
mechanisms like CBAM focus predominantly on 
features at specific hierarchical levels, missing the 
correlations between shallow anatomical details (such as 
entorhinal cortex thickness) and deep global patterns 
(such as cortical atrophy distribution). The DMA 
mechanism's ability to establish cross-scale 
dependencies through sequential channel and spatial 
attention processing enables the model to integrate 
diagnostic information across multiple resolution levels, 
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resulting in more robust and discriminative feature 
representations. 

The shallow feature pyramid architecture with 
progressively increasing channels (16, 32, 64, 128) 
provides a hierarchical representation of brain MRI 
images, capturing both fine-grained local features and 
coarse-grained global patterns. This design philosophy 
differs fundamentally from previous lightweight 
architectures such as MobileNetV2, ShuffleNetV2, and 
EfficientNet, which prioritize parameter reduction 
through techniques like depthwise separable 
convolutions or compound scaling but often sacrifice 
feature richness in the process. 

The DMA mechanism introduces two key 
innovations that distinguish it from existing attention 
approaches. First, the multi-level channel attention 
(MCA) module employs cross-scale normalization using 
global SoftMax, enabling the model to compare and 
weight channel importance across different feature 
scales globally rather than independently. This cross-
scale interaction is crucial for AD diagnosis because 
pathological changes manifest at multiple anatomical 
scales—from microscopic hippocampal atrophy to 
macroscopic ventricular enlargement—and their relative 
importance varies across disease stages. 

Second, the multi-level spatial attention (MSA) 
module performs spatial attention alignment by 
cropping attention maps to a common spatial size before 
concatenation and sigmoid activation. This design 
ensures that spatial attention weights from different 
scales are directly comparable and can be effectively 
fused, avoiding the information loss or redundancy that 
occurs when processing multi-scale features with 
traditional single-scale attention mechanisms. The 7×7 
convolutional kernel in MSA provides an appropriate 
receptive field size to capture local spatial context while 
maintaining computational efficiency. 

The OASIS-1 dataset exhibits severe class imbalance, 
with the Non-Demented class comprising 77.8% of all 
images, Very Mild Dementia 15.9%, Mild Dementia 
5.8%, and Moderate Dementia only 0.6%. This 
distribution reflects real-world clinical scenarios where 
advanced dementia cases are relatively rare in cross-
sectional studies, but it poses significant challenges for 
model training. 

The focal loss function addresses this challenge 
through two mechanisms. The focus parameter down-
weights the contribution of easily classified samples, 
allowing the model to concentrate learning capacity on 
hard-to-classify examples at decision boundaries. The 
class balance factor provides explicit weighting to 
compensate for class frequency imbalances. Together, 
these mechanisms prevent the model from becoming 
biased toward the majority class while ensuring 
adequate learning for minority classes.The effectiveness 
of focal loss is evident in the classification results for 
moderate dementia. Despite this category comprising 
only 0.6% of the training data, the model achieved high 
recall and precision, indicating it successfully learned 
the discriminative features of this rare category without 

generating false positives. This balance is crucial for 
clinical deployment—requiring both the sensitivity to 
detect rare severe cases and the specificity to avoid false 
positives. 

Despite these promising results, several limitations 
warrant consideration. First, the cross-sectional nature 
of the current study limits our ability to track disease 
progression over time, which is clinically crucial for 
monitoring treatment responses and predicting outcomes 
in individual patients. Longitudinal studies would 
provide valuable insights into how the model performs 
across different disease trajectories and progression 
rates. Second, the model relies solely on structural MRI 
data, potentially missing complementary diagnostic 
information from functional imaging (fMRI, PET) or 
biochemical markers (cerebrospinal fluid biomarkers, 
blood-based markers). Third, while the DMA 
mechanism demonstrates superior performance 
compared to single-scale attention, the fixed multi-scale 
architecture may not optimally adapt to the varying 
complexity of different brain regions or disease stages, 
suggesting room for more adaptive approaches. 

 

Conclusion 
To address the challenges of one-sided feature 

extraction and computational efficiency in AD MRI 
classification, this study proposes a lightweight model 
based on a shallow feature pyramid CNN and a dual 
multi-level attention mechanism (DMA). Experimental 
results show that the DMA mechanism establishes a 
hierarchical feature selection mechanism through cross-
scale interactions across channel and spatial dimensions, 
effectively enhancing the model's discriminative ability 
for early-stage lesions (very Mild dementia and normal 
controls) and small-sample classes (moderate dementia). 
Specifically, compared to CNN and CNN+CBAM: 
ACC improved by 3.33% and 1.26%, SEN improved by 
13.2% and 0.9%, and SPE improved by 1%. This 
provides an efficient solution for the early and accurate 
diagnosis of AD. 

Compared to the CNN method mentioned in [21] 
the classification accuracy of 97.45% for moderate 
patients our method has improved by 2%. Compared to 
the classification accuracies of 97.7%, 92.4%, and 95.8% 
for mild cognitive impairment (Mild), normal (Non), 

and moderate Alzheimer's disease (Moderate) in [22], 
our method correspondingly improves the classification 
accuracies by 1.3%, 2.6%, and 4.2%. 

The current study is based on single-modal MRI data 
from OASIS-1. In the future, we plan to incorporate 
larger-scale datasets such as ADNI and integrate 
multimodal information including PET imaging and 
cerebrospinal fluid biomarkers to further enhance the 
model's comprehensive representation capability for AD 
pathological mechanisms. Currently, the DMA 
mechanism uses fixed multi-scale feature input. Future 
research could explore dynamic attention weight 
allocation. 
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