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Introduction: Current deep learning-based computer-aided diagnosis (CAD) techniques face challenges in
hierarchical feature extraction and computational efficiency. Traditional convolutional neural networks
(CNN) often focus on local or single-scale information, neglecting global correlations of brain atrophy and
multiscale pathological features. Additionally, the parameter explosion problem in deep networks limits
model's generalization ability on small and medium-sized datasets. While the introduction of attention
mechanisms has significantly improved feature extraction and enhanced CNN recognition capabilities,
existing attention mechanisms are mostly single-scale, focusing on feature maps at specific hierarchical
levels and ignoring the correlations between features of different layers.

Material and Methods: To address these issues, this study proposes a lightweight model combining a
shallow feature pyramid CNN with a Dual Multi-level Attention (DMA) mechanism. Experiments using the
public OASIS-1 dataset, which contains 86,437 MRI images across 4 categories, employ a focal loss function
to handle class imbalance.

Results: The results show that the model including DMA outperforms both the baseline CNN and the single-
scale attention mechanism in terms of accuracy (ACC), sensitivity (SEN), and specificity (SPE). Specifically,
compared to CNN and CNN+CBAM: ACC improved by 3.33% and 1.26%, SEN improved by 13.2% and
0.9%, and SPE improved by 1%.

Conclusion: The model demonstrates significant advantages in distinguishing small-sample classes and
differentiating between very mild dementia and normal controls, highlighting its superiority in fine-grained

pathological discrimination.
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Introduction

Alzheimer’s Disease (AD), the most common
neurodegenerative disease, is characterized by
progressive brain atrophy, 3-Amyloid deposition, and
neurofibrillary tangles, leading to irreversible
cognitive decline. It ranks fifth in the global mortality
list, causing a large number of deaths annually [1-2].
As a persistent neurodegenerative brain disorder, AD
causes progressive destruction of brain cells after
onset, leading to memory loss, cognitive impairment,
and an accelerated decline in the ability to perform
daily living activities [3-4].

AD is fatal and incurable at present. Patients not
only endure lifelong physical suffering, but their
families also bear a heavy burden, encompassing
economic pressures and enormous mental and
physical tolls [4]. Additionally, it imposes a significant
burden on global healthcare systems [5]. Accurate
early diagnosis is crucial for intervening in disease
progression [6], and magnetic resonance imaging
(MRI), with its advantages of non-invasiveness and
high resolution, has become a core tool for capturing
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subtle structural changes in the AD brain, such as
hippocampal atrophy and cortical thinning [7-8].

In recent years, deep learning-based computer-
aided diagnosis (CAD) technologies have shown great
potential in MRI analysis [9-13]. However, existing
methods still face two key challenges: one-sidedness
in feature extraction and limitations in computational
efficiency. Convolutional neural networks extract
features through multiple convolutional layers, but
they often focus on local regions (such as the
hippocampus and entorhinal cortex) or single-scale
information, neglecting the global correlations of
brain atrophy and multi-scale pathological features
[14]. Additionally, AD MRI data often exhibit class
imbalance (significant differences between mild
cognitive impairment (MCI) and normal control (CN)
samples), leading to insufficient learning ability for
early lesion features in models. On the other hand, the
parameter explosion problem in deep networks
exacerbates computational resource consumption and
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limits the generalization ability of models on small
and medium-sized datasets.

The introduction of attention mechanisms has
significantly enhanced the feature representation
capabilities of medical image analysis models. The
classic Convolutional Block Attention Module [15]
(CBAM) enhances the model's focus on key regions by
jointly optimizing channel [16] and spatial attention
[17]. However, existing methods typically rely on
single-scale feature design, neglecting the correlations
between features at different hierarchical levels.
Existing methods fail to fully leverage the advantages
of multi-scale feature fusion and cannot utilize
features at different scales, leading to limited
generalization ability in complex scenarios. The size of
the dataset also imposes constraints on model
performance—for smaller datasets, more complex
models may suffer from overfitting, resulting in
decreased generalization ability in feature extraction.
Additionally, traditional attention mechanisms often
generate redundancy or cause information loss when
processing multi-scale features, making it difficult to
adapt to the heterogeneous manifestations of AD
lesions at different resolutions.

Based on the above problems, this paper proposes
a new model of shallow feature pyramid CNN
combined with a DMA [18] based on the public OASIS-
ldataset [19]:

(1) The model adopts a shallow feature pyramid
CNN network to reduce the computational
redundancy, reduce the computational complexity of
the model, extract the image features in different scale
directions, and realize the full use of the image feature
information.

(2) The DMA module used reduces one channel of
the module according to the network structure,
reduces the number of weights that the module needs

to calculate, and makes the whole network lightweight.

(3) The DMA module realizes the prominence of
important features extracted from non-scale features
of the convolution block through weighting, and
splices and fuses the prominent important features of
different scales in the subsequent process, which
enhances the ability of the model to extract and
identify features.

Experimental results show that the new model
significantly improves the discrimination ability of
small sample categories and early lesions.

In this section, we will briefly introduce the
previous research on CAD methods for AD, the
research progress of CNN architecture and attention
mechanism in AD classification, analyze the technical
bottlenecks of existing methods, and propose the
innovative direction of this research.

The core challenge of lightweight CNN in the
medical imaging field lies in balancing computational
efficiency and feature representation capability,
especially when AD pathological features exhibit
multi-scale and high-dimensional characteristics.
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MobileNetV2 [10] reduces the number of parameters
to 5.3 million through depth wise separable
convolutions, but it fails to achieve high classification
accuracy on the ADNI dataset [20]. Its bottleneck
stems from the fact that depth wise separable
convolutions weaken inter-channel information
interaction, leading to insufficient sensitivity to subtle
structural changes such as hippocampal atrophy. The
study in [11] optimizes computational complexity
through channel shuffling and grouped convolutions,
but the receptive field of its model in AD classification
only covers a 16x16 pixel region, making it difficult to
capture the global patterns of whole-brain cortical
thickness changes. Tan et al. [12] used the BO model
with compound scaling design to achieve an AUC
value of 0.892 in AD classification, but the lack of
attention mechanism guidance results in insufficient

suppression of non-salient features such as
ventricular enlargement.
The introduction of attentional mechanisms

improves the accuracy of deep learning in recognizing
Alzheimer's disease. Woo et al. [15] embedded CBAM
into ResNet-50, constructing channel attention maps
via global average pooling and multi-layer
perceptrons, and combined spatial attention kernels
to improve feature focusing ability. This approach
increased the AUC for AD classification from 0.901 to
0.934. However, in lightweight networks, CBAM
introduces an additional 1.2 million parameters,
leading to a 28% increase in floating-point operations
and higher inference latency, which struggles to meet
real-time diagnostic requirements. Limitation of
single-scale attention [15-17]: Existing studies only
apply attention mechanisms to deep feature maps,
neglecting the collaborative optimization between
anatomical details in shallow features (e.g., entorhinal
cortex thickness) and global patterns in deep features
(e.g. cortical atrophy distribution). The DMA
mechanism [18] consists of multi-layer channel
attention (MCA) and multi-layer spatial attention
(MSA) modules. By calculating attention in channel
and spatial dimensions for feature maps of different
scales, it achieves feature screening and weighting,
thereby improving model performance.

Materials and Methods

Dataset

The dataset used in this study was sourced from the
publicly available OASIS-1 dataset [19], which
comprises a cross-sectional sample of 416 participants
aged 18 to 96 years. The dataset comprises 86437 brain
MRI images, which are classified into four categories
according to the progression of Alzheimer’s Disease.
Based on the provided metadata and clinical dementia
rating values, the patient dataset was categorized into

four groups: Mild Dementia ( Mild ) ,Moderate
Dementia (Moderate) , Non-Demented (Non) and

Very Mild Dementia (Very Mild) as shown in Figure
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1. This allows for the detection and study of different
stages of Alzheimer’s Disease progression, providing a
valuable resource for analyzing and detecting early signs
of the disease. Table 1 describes the distribution of
images for each category.

Table 1. OASIS-1 dataset distribution

No. Class Images OASIS-1
0 Mild Dementia 5002

1 Moderate Dementia 488

2 Non Demented 67222

3 Very Mild Dementia 13725

Model Structure

The model proposed in this paper takes the shallow
feature pyramid CNN network combined with the DMA
module (Figure 2) as its core components. The input
channels of the four convolution blocks (Figure 2) are
set as 16, 32, 64, and 128 in a progressively increasing
order. This design of progressively increasing channel
numbers across multiple layers allows the network to
deeply analyze MRI images at multiple levels from local
to global, thereby capturing both subtle features in fine
details and macroscopic characteristics from a global
perspective. After each convolution block completes
feature extraction, the output feature maps are
sequentially stored to construct a multi-scale feature
stack with channel identifiers (16, 32, 64, 128). This
feature stack is then input into the DMA attention
module, where key information is effectively
highlighted through precise weighting of important
features. Concatenation and fusion operations efficiently
integrate multi-scale features, making the processed
feature information richer and more comprehensive.
Finally, the finely processed feature information is
mapped to a fully connected layer, which realizes the
four-class classification of MRI images through
comprehensive processing.

Each convolutional block consists of two 3x3
convolutional layers, batch normalization layers, a max
pooling layer, two RELU activation functions, and a
Dropout layer. The first convolutional layer extracts
initial features, followed by the first batch normalization
and first RELU activation function, which normalize the
initial features (such as edges and corners) and apply
sufficient non-linear activation to form basic features.
The second convolutional layer extracts combined
features, and the subsequent second batch normalization
and second RELU activation function normalize the
textures, shapes, and other attributes of these combined
features while applying non-linear activation. This
process stabilizes the feature distribution after the two
convolutional layers, preventing drastic changes in the
input distribution of the second layer caused by the
sparsity of the first RELU activation.

Non-linear activation using RELU is defined as:
A" =ReLU(F®, ;) =max(0,F™, ;) M

For the output feature map of the convolutional layer

(m
F i,jk

. Where ndenotes the n-th convolutional

block, @i, 1) represents the spatial location, and k is the
channel index.

Using max pooling to reduce the spatial dimensions
of the feature map, retain local maxima (salient features),
and enhance translation invariance, it is defined as:

P®, . =max{A"™, . [, j) € Pooling Window} @)

The pooling window size is 2x2. For the input
) Q)

feature map ~ "*, the output after pooling is P i

where 9)) represents the spatial location after pooling.

Mild Dementia

Moderate Dementia

Figure 1. Example of image Samples 4 classes from the OASIS-1 dataset.
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Figure 2. The shallow feature pyramid CNN +Dual Multi-level Attention [16] modules.

The first 3x3 convolutional layer extracts initial
features, capturing local information such as simple
edges and lines. Subsequently, the first batch
normalization layer normalizes these initial features,
adjusting their mean and variance to stabilize the feature
distribution and accelerate model training convergence.
Immediately after, the first RELU activation function
applies a nonlinear transformation to the features,
highlighting positive values and suppressing negative
values to fully activate information such as edges and
corners, forming basic features. The second 3x3
convolutional layer extracts combined features on this
basis, capturing more advanced textures, shapes, etc.
Subsequently, the second batch normalization layer
normalizes the features again, stabilizing the feature
distribution after the two convolutional layers and
alleviating the problem of drastic changes in the input
distribution of the second layer caused by the sparsity of
the first RELU (where some neurons output zero), thus
avoiding instability in model training. Then, the second
RELU activation function further applies nonlinear
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activation to the textures, shapes, and other attributes of
the combined features, enhancing the feature
representation ability and enabling the model to better
capture complex patterns. Finally, the max pooling layer
reduces the spatial dimensions of the feature map
through down sampling, lowering computational
complexity while retaining important features; the
Dropout layer randomly discards some neurons during
training to prevent overfitting and enhance the model's
generalization ability.

Dual Multi-Level Attention (DMA)

The DMA [16] mechanism enhances feature
representation  capabilities  through  cross-scale
interactions in channel and spatial dimensions. By
employing feature attention methods that integrate the
channel and spatial domains, it deeply delves into the
mechanism of attention from local to global scales,
improving the model's diagnostic performance. DMA is
constructed by cascading the Multi-Level Channel
Attention and Multi-Level Spatial Attention modules
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(Figure 2), sequentially optimizing attention in the
channel and spatial domains for multi-scale features. In
the MCA module, for the input feature list of different
scales (feature maps with 16, 32, 64, 128 channels),
global adaptive average pooling is first applied
independently to each scale of features to compress the
spatial dimensions into 1x1 while preserving channel
dimension information. Subsequently, a bottleneck
structure composed of two 1x1 convolutions (with a
reduction factor) is used for channel importance
modeling: the first convolution reduces the number of
channels to max(in_channels /reduction, 1) and activates
it with ReLU, and the second convolution restores the
original number of channels to generate channel-wise
attention weights. After concatenating the attention
weights of each scale along the channel dimension,
global SoftMax is used for cross-scale normalization to
make the channel weights of different scales globally
comparable. Finally, the weights are split according to
the original number of channels, and element-wise
multiplied back to the feature maps of the corresponding
scales to complete the cross-scale fusion of channel
attention. The MSA module focuses on cross-scale
interactions of spatial attention. For each scale of
features, average pooling and max pooling features are
first calculated separately, concatenated along the
channel dimension, and then input into a 7x7
convolution to generate a single-channel spatial
attention map. To achieve cross-scale interaction, the
attention maps of each scale are cropped to the spatial
size (H, W) of the first scale and concatenated, then
activated by a Sigmoid function to generate a global
spatial attention map. Subsequently, the attention map is
split into single channels, cropped back to the original
scale's spatial size, and element-wise multiplied back to
the corresponding feature maps, realizing multi-scale
alignment and weighting of spatial attention. The DMA
mechanism  establishes  cross-domain  dependency
relationships among features of different scales through
channel-first then spatial attention hierarchical
processing, effectively enhancing key feature
representations and providing more discriminative
feature inputs for subsequent classification tasks.
Global Adaptive Average Pooling is defined as:

1
yc: H ><W iil \gvzlxn,c,i,j vn 6[11 N]'C E[:LC] (3)
For an input feature map X e RV (where N is
the batch size, Cis the number of channels,

and HxW are the spatial dimensions), the output result

) NxCx1x1 .
is Y €R , which represents the average value of
pixel values at all spatial positions for each channel.

Classification Module

As shown in Figure 2, in the classification module,
the first fully connected layer performs a linear
transformation on the output of weighted feature fusion
to preprocess the features. The second fully connected
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layer, after being processed by the SILU activation
function and Dropout, maps the features to the
classification dimension and outputs class scores,
thereby providing the basis for the final classification
decision.

The SILU (Sigmoid Linear Unit) activation function
is a self-gated activation function. Compared to ReLU,
it enables the model to learn more complex patterns and
has desirable properties such as smoothness and non-
monotonicity, which help improve model performance.
It is defined as:

SILU(X) = x- 1_
l+e™ (4)
x is the output of the first fully connected layer. By
using x as the input to SILU, this design helps better
enhance the model's generalization capability.

Loss Function

To enhance the discriminative ability of multi-level
dementia classification, the Focal Loss function is
employed to optimize the model's training process.
Addressing the class imbalance issue in the dataset, this
loss function introduces a focus parameter y and class
balance factor o based on cross-entropy, dynamically
adjusting the training weights of different samples. The
final definition of Focal Loss is:

Fooma- (- p) - —log(c® )
oss— ¥\ LT ty'_o X :
0ss= & p gzjej ®)

Py is the prediction confidence, which reflects the
difficulty level of samples, and is defined as:

_log(ze_eyxj)
p.=¢€ ! (6)

The Focal Loss function enables the model to
allocate more training attention to confusable early-
stage lesions (such as Mild Dementia and Moderate
Dementia) and small-sample classes in the dementia
grading task, significantly improving the clinical
accuracy of classification.

Experimental Environment

Table 2 shows the experimental equipment
experimental environment and model parameters in this
paper, and the Adam optimizer is used for network training.
The experimental dataset consisted of 86,437 images that
were divided into subsets at a scale of 0.85:0.2:0.15.

Table 2. Experimental Setting

Parameter Setting

GPU NVIDIA GeForce RTX 4060 Ti 8 GB
PyTorch 250

Python 311

Learning Rate <10

Epochs 40

Batch Size 32
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Evaluation Metrics

This paper uses common evaluation metrics to
comprehensively assess the effectiveness of the proposed
model. These metrics include Specificity (SPE),
Sensitivity (SEN), Accuracy (ACC), Recall, F1-Score,
and the Area Under the ROC Curve (AUC).

Definitions for some of the metrics in the experiment

) PE=_TN REcall = SEN=——
are provided below: NP TP+N - and
aceo_ TPHIN
TPATN+FN+FP

In the formula, TP represents true
positives, FN represents false negatives, TN represents
true negatives, and FP represents false positives. AUC
(Area Under the ROC Curve) is calculated based on the
False Positive Rate (FPR =1 — SPE) and True Positive

Experiment

In order to verify that multi-scale DMA attention can
better improve the recognition ability of the model than
single-scale attention, we conducted a comparative
experiment based on the CNN model used in the
experiment and the single-scale attention CBAM. The
experimental results are presented in Table 3.

As shown in Table 3, shallow CNN+DMA is superior
to shallow CNN and CBAM single-scale attention. The
model improved the recognition rate ACC for the entire
dataset by 3.3% and 1.3%, respectively, compared to the
two baselines. This improvement reflects the new model's
ability to effectively identify and classify data features,
thereby improving the overall classification accuracy.
Recognition rates were also significantly improved in four

Rate (TPR = SEN). categories compared to CNN and CNN+CBAM: 5% and 2%

for the mild category, 18% and 2% for the moderate
category, 4% for the non-category, and 5% and 6% for the
very mild category. Other indicators also improved by 2%
to 12% in each of the four types of identification categories.

Table 3. The evaluation metrics of the three models under different categories of data.

Model Category ACC Precision Recall F1-Score Support
Mild 0.94 0.65 0.78 1238
Moderate 0.82 0.71 0.82 121

CNN 0.915
Non 0.91 0.98 0.95 16638
Very Mild 0.89 0.66 0.76 3397
Mild 0.97 0.76 0.84 1238

CNN+CBAM Moderate 0.935 0.98 0.77 0.79 121
Non ' 0.95 0.98 0.96 16638
Very Mild 0.88 0.79 0.83 3397
Mild 0.99 0.77 0.86 1238

CNN+DMA Moderate 1.00 0.76 0.86 121

0.948

(Ours) Non 0.95 0.99 0.97 16638

Very Mild 0.94 0.80 0.87 3397

Special note: Since the data of the Mild class and the Moderate class is much smaller than that of the other two classes, the recognition accuracy of these two

categories is very high on the model.

The ACC parameter in the table is the accuracy of the model over the entire dataset.

I CNN I CNN+CBAN [ CNN+DMA
1.0 0.9900 0.9800 0.9900
0.9358
0.9151

09

0.8 0.7820 0.7910

0.7

0 6590
0.6

SPE

Figure 3. Evaluation results of ACC, SPE, and SEN for the three models on the entire dataset.
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As shown in Figure 3, the model that introduced the
attention mechanism stood out among the ACC, SEN, and
SPE evaluation results of the three models (CNN,
CNN+CBAM, CNN+DMA) across the entire dataset.
Specifically, in the ACC metrics, the CNN is 0.9151, the
CNN+CBAM is 0.9358, and the CNN+DMA reaches
0.9484, representing a 3.33% improvement compared to
the CNN and a 1.26% increase over the CNN+CBAM. In
terms of SEN metrics, CNN+DMA improved by 13.2%
over CNN, while CNN+CBAM improved by 0.9%. In
terms of SPE metrics;, CNN+DMA increased by 1%
compared to CNN+CBAM. These data clearly show that
the accuracy, sensitivity, and specificity of the model in
multi-classification tasks are significantly improved after
the introduction of attention mechanisms in the underlying
shallow feature pyramid CNN, especially the CNN+DMA
model, which outperforms shallow CNN and CBAM on all
metrics.

ROC Curves Comparison(AD/CN Classification)

1.0 v
f’,
e
l,/
0.8 R
2 o
o 0.6 e
= e
[ "
© -
= 04 -
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R —— CNN+CBAM (Macro-AUC = 0.976)
02 e CNNIDMA (Macro-AUC = 0.986)
’/' === (NN (Macro-AUC 0.967)
’,’J === Random Guess (AUC = 0.500)
0.0 :
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4. ROC classification curves of the three models for the entire
dataset.

Figure 4 shows the ROC classification curve and area
under the curve (AUC) for the entire dataset for the three
models (CNN (AUC = 0.959), CNN+CBAM (AUC =
0.974), and CNN+DMA (AUC = 0.986)), as well as the
dashed line representing random guessing. Among them,
the AUC of the CNN+DMA model was 0.986, which was
significantly greater than that of the other two models
(CNN and CNN+CBAM). Experiments have confirmed
that the multi-scale attention mechanism can effectively
enhance the feature representation and enhance the
discrimination ability of complex lesions, especially in
scenes of sample imbalance and small sample size.
Therefore, this mechanism is an effective solution to
optimize medical imaging diagnostic models, and provides
a powerful strategy to solve the inherent challenges in
medical image analysis.

The confusion matrix in Figure 5 shows the prediction
results for the four classifications (Mild Dementia,
Moderate Dementia, No Dementia, and Very Mild
Dementia). 21,393 images from 15% of the dataset were
used as a test set to validate the predictive categorization of
the best model. The test set consisted of a total of 21,393
images, of which 1,167 images were from the Mild class,
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125 images were from the Moderate class, and Non class
had 16716 images, and 3,385 images were from the Very
Mild class. As can be seen from the figure, since the dataset
samples in the moderate dementia category are very few
compared to the other categories, it achieves a completely
correct prediction, and the other three categories are also
predicted correctly at more than 95%, with only a small
number of samples with misclassification, it can be
obtained that the model performs well in predicting the
diagnosis of dementia.

Conlusion Maltrix
16000

Mild - 938 0 185 4
14000

12000
Moderate - 1 o7 22 £y

10000

8000

‘Irue Label

Non- 5 0 75 - 6000

-4000

Very Mild - 8 0 570 2807 2000
Nli[d Moderate Non Very ‘Mild £

Predicted Label

Figure 5. Four types of prediction outcome confusion matrices.

Discussion

This study successfully addresses two critical
challenges in deep learning-based Alzheimer's disease
classification: one-sided feature extraction and
computational efficiency limitations. Our proposed
model, combining a shallow feature pyramid CNN with
a dual multi-level attention (DMA) mechanism,
achieved an overall accuracy of 94.84% on the OASIS-1
dataset, representing a 3.33% improvement over the
baseline  CNN and a 1.26% improvement over
CNN+CBAM. More importantly, the  model
demonstrated substantial gains in sensitivity (13.2%
over CNN, 0.9% over CNN+CBAM) and maintained
high specificity (1% improvement over CNN+CBAM),
with an AUC of 0.986.

The experimental results validate our hypothesis that
multi-scale attention mechanisms can more effectively
capture the heterogeneous manifestations of AD

pathology across different spatial  resolutions.
Traditional CNNs and even single-scale attention
mechanisms like CBAM focus predominantly on

features at specific hierarchical levels, missing the
correlations between shallow anatomical details (such as
entorhinal cortex thickness) and deep global patterns
(such as cortical atrophy distribution). The DMA
mechanism's  ability to  establish  cross-scale
dependencies through sequential channel and spatial
attention processing enables the model to integrate
diagnostic information across multiple resolution levels,
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resulting in more robust and discriminative feature
representations.

The shallow feature pyramid architecture with
progressively increasing channels (16, 32, 64, 128)
provides a hierarchical representation of brain MRI
images, capturing both fine-grained local features and
coarse-grained global patterns. This design philosophy
differs fundamentally from previous lightweight
architectures such as MobileNetV2, ShuffleNetV2, and
EfficientNet, which prioritize parameter reduction
through  techniques like  depthwise  separable
convolutions or compound scaling but often sacrifice
feature richness in the process.

The DMA mechanism introduces two key
innovations that distinguish it from existing attention
approaches. First, the multi-level channel attention
(MCA) module employs cross-scale normalization using
global SoftMax, enabling the model to compare and
weight channel importance across different feature
scales globally rather than independently. This cross-
scale interaction is crucial for AD diagnosis because
pathological changes manifest at multiple anatomical
scales—from microscopic hippocampal atrophy to
macroscopic ventricular enlargement—and their relative
importance varies across disease stages.

Second, the multi-level spatial attention (MSA)
module performs spatial attention alignment by
cropping attention maps to a common spatial size before
concatenation and sigmoid activation. This design
ensures that spatial attention weights from different
scales are directly comparable and can be effectively
fused, avoiding the information loss or redundancy that
occurs when processing multi-scale features with
traditional single-scale attention mechanisms. The 7x7
convolutional kernel in MSA provides an appropriate
receptive field size to capture local spatial context while
maintaining computational efficiency.

The OASIS-1 dataset exhibits severe class imbalance,
with the Non-Demented class comprising 77.8% of all
images, Very Mild Dementia 15.9%, Mild Dementia
5.8%, and Moderate Dementia only 0.6%. This
distribution reflects real-world clinical scenarios where
advanced dementia cases are relatively rare in cross-
sectional studies, but it poses significant challenges for
model training.

The focal loss function addresses this challenge
through two mechanisms. The focus parameter down-
weights the contribution of easily classified samples,
allowing the model to concentrate learning capacity on
hard-to-classify examples at decision boundaries. The
class balance factor provides explicit weighting to
compensate for class frequency imbalances. Together,
these mechanisms prevent the model from becoming
biased toward the majority class while ensuring
adequate learning for minority classes.The effectiveness
of focal loss is evident in the classification results for
moderate dementia. Despite this category comprising
only 0.6% of the training data, the model achieved high
recall and precision, indicating it successfully learned
the discriminative features of this rare category without
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generating false positives. This balance is crucial for
clinical deployment—requiring both the sensitivity to
detect rare severe cases and the specificity to avoid false
positives.

Despite these promising results, several limitations
warrant consideration. First, the cross-sectional nature
of the current study limits our ability to track disease
progression over time, which is clinically crucial for
monitoring treatment responses and predicting outcomes
in individual patients. Longitudinal studies would
provide valuable insights into how the model performs
across different disease trajectories and progression
rates. Second, the model relies solely on structural MRI
data, potentially missing complementary diagnostic
information from functional imaging (fMRI, PET) or
biochemical markers (cerebrospinal fluid biomarkers,
blood-based markers). Third, while the DMA
mechanism  demonstrates  superior  performance
compared to single-scale attention, the fixed multi-scale
architecture may not optimally adapt to the varying
complexity of different brain regions or disease stages,
suggesting room for more adaptive approaches.

Conclusion

To address the challenges of one-sided feature
extraction and computational efficiency in AD MRI
classification, this study proposes a lightweight model
based on a shallow feature pyramid CNN and a dual
multi-level attention mechanism (DMA). Experimental
results show that the DMA mechanism establishes a
hierarchical feature selection mechanism through cross-
scale interactions across channel and spatial dimensions,
effectively enhancing the model's discriminative ability
for early-stage lesions (very Mild dementia and normal
controls) and small-sample classes (moderate dementia).
Specifically, compared to CNN and CNN+CBAM:
ACC improved by 3.33% and 1.26%, SEN improved by
13.2% and 0.9%, and SPE improved by 1%. This
provides an efficient solution for the early and accurate
diagnosis of AD.

Compared to the CNN method mentioned in [21]
the classification accuracy of 97.45% for moderate
patients our method has improved by 2%. Compared to
the classification accuracies of 97.7%, 92.4%, and 95.8%
for mild cognitive impairment (Mild), normal (Non),
and moderate Alzheimer's disease (Moderate) in [22],
our method correspondingly improves the classification
accuracies by 1.3%, 2.6%, and 4.2%.

The current study is based on single-modal MRI data
from OASIS-1. In the future, we plan to incorporate
larger-scale datasets such as ADNI and integrate
multimodal information including PET imaging and
cerebrospinal fluid biomarkers to further enhance the
model's comprehensive representation capability for AD
pathological ~mechanisms. Currently, the DMA
mechanism uses fixed multi-scale feature input. Future
research could explore dynamic attention weight
allocation.
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