Comparative Analysis of Gamma-Ray Shielding in Glass Systems with Pb/Bi Heavy Elements

Document Type : Original Paper

Authors

1 Department t of Physics, Imam Hossein University, Tehran, Iran

2 Faculty of Basic Sciences, Imama Hossein University, Tehran, Iran.

10.22038/ijmp.2025.88399.2556

Abstract

Introduction: The development of effective, eco-friendly radiation shielding materials is critical for medical and nuclear applications. This research investigates the effect of bismuth oxide (Bi₂O₃) content on the gamma-ray attenuation properties of PbO–Al₂O₃–B₂O₃–SiO₂–Bi₂O₃ glasses.
Material and Methods: Six distinct glass compositions, characterized by varying mole fractions of Bi₂O₃, were meticulously selected for this study. The mass attenuation coefficients (MAC) and linear attenuation coefficients (LAC) were computed utilizing the Geant4 Monte Carlo simulation toolkit and subsequently validated against the Phy-X/PSD computational software. The half-value layer (HVL), tenth-value layer (TVL), and effective atomic number (Zeff) were derived across a gamma-ray energy spectrum ranging from 0.015 to 10 MeV. 
Results: Excellent agreement was observed between Geant4 and Phy-X results (relative error < 2%). The LAC increased with Bi₂O₃ content, particularly at low energies (< 0.3 MeV), where sample S-6 (highest Bi₂O₃) exhibited the highest attenuation. HVL and TVL increased with photon energy but decreased with higher Bi₂O₃ concentration, confirming enhanced shielding efficiency. S-6 displayed the lowest TVL, indicating superior performance. Zeff varied significantly with composition and energy, reaching a minimum near 2 MeV for all samples. All glasses showed shielding capabilities comparable to or better than conventional glass shields. 
Conclusion: Increasing Bi₂O₃ content substantially improves gamma-ray shielding in lead-bismuth borosilicate glasses, especially at low energies. These glasses are promising candidates for radiation protection applications.

Keywords

Main Subjects


  1. Jain S. Radiation in medical practice & health effects of radiation: rationale, risks, and rewards. J Family Med Prim Care. 2021;10(4):1520.
  2. Subedi B, Paudel J, Lamichhane TR. Gamma-ray, fast neutron and ion shielding characteristics of low-density and high-entropy Mg–Al–Ti–V–Cr–Fe–Zr–Nb alloy systems using Phy-X/PSD and SRIM programs. Heliyon. 2023;9(7):e17725.
  3. ALMisned G, Elshami W, Issa SA, Süsoy G, Zakaly HM, Algethami M, et al. Enhancement of gamma-ray shielding properties in cobalt-doped heavy metal borate glasses: the role of lanthanum oxide reinforcement. Materials. 2021;14(24):7703.
  4. Al-Buriahi MS, El‐Agawany FI, Sriwunkum C, Akyıldırım H, Arslan H, Tonguç BT, et al. Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Physica B. 2020;581:411946.
  5. Kaky KM, Sayyed MI. Selected germanate glass systems with robust physical features for radiation protection material use. Radiat Phys Chem. 2024;215:111321.
  6. Alzahrani JS, Alrowaili ZA, Saleh HH, Hammoud A, Alomairy S, Sriwunkum C, et al. Synthesis, physical and nuclear shielding properties of novel Pb–Al alloys. Prog Nucl Energy. 2021;142:103992.
  7. Hiremath GB, Hosamani MM, Vinayak A, Patil PN, Singh VP, Ayachit NH, et al. Investigation of gamma ray, electron, and neutron interaction parameters of some topological insulating materials. Radiat Eff Defects Solids. 2022;178(3-4):335-51.
  8. Saeed A, Alomairy S, Sriwunkum C, Al-Buriahi MS. Neutron and charged particle attenuation properties of volcanic rocks. Radiat Phys Chem. 2021;184:109454.
  9. Ahmadi M, VahidZanganeh V, DarushNaderi N. Investigated mechanical, physical parameters and gamma-neutron radiation shielding of the rare earth (Er2O3/CeO2) doped barium borate glass: role of melting time and temperature. Radiat Phys Chem. 2024;217:111450.
  10. Alzahrani JS, Alrowaili ZA, Olarinoye IO, Katubi KM, Al-Buriahi MS. Effect of ZnO on radiation shielding performance and gamma dose of boron silicate glasses. Silicon. 2023;16(1):105-13.
  11. Katubi KM, Olarinoye IO, Alrowaili ZA, Al-Buriahi MS. Optical transmission, polarizability, and photon/neutron shielding properties of Bi2O3/MnO/B2O3 glass system. Optik. 2022;268:169695.
  12. Sayyed MI, Al‐Hadeethi Y, Alshammari M, Ahmed M, Al-Heniti S, Rammah YS. Physical, optical and gamma radiation shielding competence of newly boro-tellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Ceram Int. 2021;47(1):611-8.
  13. Sekhar KC, Ahmed MR, Narsimlu N, Deshpande U, Sathe V, Shareefuddin M. The effect of the addition of CaF2 and PbF2 on boro-tellurite glasses doped with chromium ions. Mater Res Express. 2020;6(12):125206.
  14. Sayyed MI, Sadeq MS, Shaaban KS, El‐Rehim AFA, Ali AM, Morshidy H. Elucidating the effect of La2O3–B2O3 exchange on structure, optical and radiation shielding improvements of Na2O–NiO–B2O3 glass. Opt Mater. 2023;142:114051.
  15. Shaaban KS, Althagafi TM, Ashour A, Alalawi A, Al-Buriahi MS, Ibraheem AA. The role of Nb2O5 on structural, mechanical, and gamma-ray shielding characteristics of lithium molybdenum borate glasses. Radiat Phys Chem. 2024;216:111440.
  16. El‐Rehim AFA, Zahran HY, Yahia IS, Wahab EAA, Shaaban KS. Structural, elastic moduli, and radiation shielding of SiO2-TiO2-La2O3-Na2O glasses containing Y2O3. J Mater Eng Perform. 2021;30(3):1872-84.
  17. Shaaban KS, Alomairy S, Al-Buriahi MS. Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 J Mater Sci Mater Electron. 2021;32(21):26034-48.
  18. Shaaban KS, Tamam N, Alghasham H, Alrowaili ZA, Al-Buriahi MS, Ellakwa TE. Thermal, optical, and radiation shielding capacity of B2O3-MoO3-Li2O- Nb2O5 Mater Today Commun. 2023;37:107325.
  19. Shaaban KS, Al-Baradi AM, Ali AM. Investigation of BaO reinforced TiO2–P2O5–Li2O glasses for optical and neutron shielding applications. RSC Adv. 2022;12(5):3036-43.
  20. Althagafi TM, Sayed MA, Alghasham H, Al-Harbi N, Shaaban KS. The impact of changing the LiF concentration on structural, thermal, physical, and optical properties of CdO—SiO2—B2O3—MoO3—LiF glasses. Silicon. 2023;15(16):7047-56.
  21. Al-Baradi AM, Wahab EAA, Shaaban KS. Preparation and characteristics of B2O3–SiO2–Bi2O3–TiO2–Y2O3 glasses and glass-ceramics. Silicon. 2021;14(10):5277-87.
  22. Shaaban KS, Al-Baradi AM, Ali AM. The impact of Cr2O3 on the mechanical, physical, and radiation shielding characteristics of Na2B4O7–CaO–SiO2 Silicon. 2022;14(16):10375-82.
  23. Koubisy MSI, Shaaban KS, Wahab EAA, Sayyed MI, Mahmoud KA. Synthesis, structure, mechanical and radiation shielding features of 50SiO2–(48+X) Na2B4O7-(2−X) MnO2 Eur Phys J Plus. 2021;136(2):197.
  24. Shaaban KS, Alotaibi BM, Youf ES. Effect of La2O3 concentration on the structural, optical and radiation-shielding behaviors of titanate borosilicate glasses. J Electron Mater. 2023;52(6):3591-603.
  25. Alyousef HA, Alrowaili ZA, Saad M, Almohiy HM, Alshihri AA, Shaaban KS, et al. Examinations of mechanical and shielding properties of CeO2 reinforced B2O3–ZnF2–Er2O3–ZnO glasses for gamma-ray shield and neutron applications. Heliyon. 2023;9(3):e14435.
  26. Park J, Kim HJ, Kim S, Cheon J, Kaewkhao J, Limsuwan P, et al. X-ray and proton luminescences of bismuth-borate glasses. J Korean Phys Soc. 2011;59(2):657-60.
  27. Thakur V, Thakur V, Kaur A, Singh L. Synthesis and the study of structural, thermal and optical properties of (100-x) Bi2O3-x(BaO-TiO2) glass system. Optik. 2020;223:165646.
  28. Alomairy S, Alrowaili ZA, Kebaïli I, Wahab EAA, Mutuwong C, Al-Buriahi MS, et al. Synthesis of Pb3O4-SiO2-ZnO-WO3 glasses and their fundamental properties for gamma shielding applications. Silicon. 2021;14(10):5661-71.
  29. Fayad AM, Shaaban KS, Abd-Allah WM, Ouis MA. Structural and optical study of CoO doping in borophosphate host glass and effect of gamma irradiation. J Inorg Organomet Polym Mater. 2020;30(12):5042-52.
  30. Albarzan B, Almuqrin AH, Koubisy MSI, Wahab EAA, Mahmoud KA, Sayyed MI. Effect of Fe2O3 doping on structural, FTIR and radiation shielding characteristics of aluminium-lead-borate glasses. Prog Nucl Energy. 2021;141:103931.
  31. Waly MA, El-Sayed AWA, Al-Qous GS, Bourham MA. Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat Phys Chem. 2018;150:120-4.
  32. Alipoor MR, Eshghi M. Nickel/multiwalled carbon nanotube composites as gamma-ray shielding. Nano. 2024;19(6):2450027.
  33. Zou C, Luan G, Luo H, Zhang Q, Ren J, Ruan X, et al. Geant4 simulation of the gamma-ray total absorption facility. Symmetry. 2025;17(1):92.
  34. El-Khayatt AM. Calculation of gamma-ray attenuation parameters for local rocks. Radiat Phys Chem. 2019;165:108496.
  35. Alipoor MR. Enhancing gamma-ray shielding performance of HDPE composites using PbO and Bi2O3 J Korean Phys Soc. 2025;87:243-53.
  36. Alajerami YS, Mhareb MHA, Sayyed MI, Al-Ghamdi H, Almuqrin AH, Alshahri F, et al. Comprehensive study for radiation shielding characteristics for Bi2O3-B2O3–ZnO composite using computational radioanalytical Phy-X/PSD, MCNP5, and SRIM software. Sci Rep. 2025;15(1):4527.
  37. Alipoor MR, Eshghi M, Sever R. Monte Carlo simulation of gamma and neutron shielding with high-performance ultra-heavy cement composite. J Med Phys. 2024;49(4):661-72.
  38. Issa SAM. Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat Phys Chem. 2015;120:33-7.
  39. Gaikwad DK, Obaid SS, Sayyed MI, Bhosale RR, Awasarmol VV, Kumar A, et al. Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes. Mater Chem Phys. 2018;213:508-17.
  40. Ersundu AE, Büyükyıldız M, Ersundu MÇ, Şakar E, Kurudirek M. The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Prog Nucl Energy. 2017;104:280-7.
  41. Eshghi M. Investigation of radiation protection features of the TeO2–B2O3–Bi2O3–Na2O–NdCl3 glass systems. J Mater Sci Mater Electron. 2020;31(20):16479-97.
  42. Frederick CH, Julius FM, Jecong JFM, Hila FC, Castañaga IS, Dingle CAM, et al. ENDF/B-VIII-based fast neutron removal cross sections database in Z = 1 to 92 generated via multi-layered spherical geometry. Radiat Phys Chem. 2023;206:110770.