1
Department of Physics, College of Sciences, Mustansiriyah University, Baghdad, Iraq
2
Department of Biology, College of Sciences, Mustansiriyah University, Baghdad, Iraq
10.22038/ijmp.2025.85948.2510
Abstract
Introduction: The process of wound healing represents a dynamic and multifaceted phenomenon characterized by intricate cellular and molecular mechanisms aimed at the restoration of tissue integrity. The present study examined the impact of low-dose ionizing radiation, particularly alpha particles released by americium-241, on the process of wound healing in murine experimental models. Material and Methods: Twenty-four male mice were randomly divided into three groups: a control group (CG) and two experimental groups exposed to radiation for 5 minutes (IG-5) and 15 minutes (IG-15), respectively (n = 8 per group). Each mouse received two 8 mm circular full-thickness skin excisions on the dorsum. Wound healing was evaluated over 10 days using photographic analysis (quantified via ImageJ software) and histological assessment. Results: Results indicated significantly enhanced wound closure in both irradiated groups, particularly IG-15, compared to the CG. Biochemical analyses revealed elevated levels of growth factors in irradiated tissues. Histological findings showed increased collagen deposition, greater fibroblast proliferation, and reduced inflammatory cell infiltration in the experimental groups. Conclusion: These findings suggest that controlled low-dose alpha radiation, particularly in the IG-15 protocol, may beneficially modulate the wound healing process and hold potential for novel therapeutic applications.
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. J Polym Res. 2022;29(3):1-37.
Zishan SA, Uddin MM, Mohammad M, Asadul Karim Azad SM, Naima J, Ibban SS, et al. Costus speciosus leaf and seed extracts for wound healing: a comparative evaluation using mice excision wound models. Clinical Phytoscience. 2024 Feb 21;10(1):5.
Sharda D, Kaur P, Choudhury D. Protein-modified nanomaterials: emerging trends in skin wound healing. Discover Nano. 2023;18(127):1-36.
Khalaf MA, Al-Sharqi SA, Ahmed BM. Accelerating the healing of full-thickness excision wounds in mice using piezoelectric direct discharge plasma. Iraqi J Vet Sci. 2024;38(4):847-57.
de Souza de Aguiar P, Correa ÁP, Antunes FTT, et al. Benefits of Stryphnodendron adstringens when associated with hydrogel on wound healing in diabetic rats. Clin Phytosci. 2021;7(1):1-12.
Chuang YC, Cheng MC, Lee CC, Chiou TY, Tsai TY. Effect of ethanol extract from Lactobacillus plantarum TWK10-fermented soymilk on wound healing in streptozotocin-induced diabetic rat. AMB Express. 2019;9(1):1-11.
Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells. 2022;11(15):1-46.
Cullen B, Gefen A. The biological and physiological impact of the performance of wound dressings. Int Wound J. 2023;20(4):1292-303.
Gupta A, Avci P, Dai T, Huang YY, Hamblin MR. Ultraviolet Radiation in Wound Care: Sterilization and Stimulation. Adv Wound Care (New Rochelle). 2013;2(8):422-37.
Li Q, Kao H, Matros E, Peng C, Murphy GF, Guo L. Pulsed radiofrequency energy accelerates wound healing in diabetic mice. Plast Reconstr Surg. 2011;127(6):2255-62.
Noda M, Aoki A, Mizutani K, Lin T, Komaki M, Shibata S, et al. High‐frequency pulsed low‐level diode laser therapy accelerates wound healing of tooth extraction socket: An in vivo study. Lasers in surgery and medicine. 2016 Dec;48(10):955-64.
Karmaker N, Maraz KM, Islam F, Haque MM, Razzak M, Mollah M, et al. Fundamental characteristics and application of radiation. GSC Advanced Research and Reviews. 2021 Apr 30;7(1):064-72.
Mellhammar E, Dahlbom M, Vilhelmsson-Timmermand O, Strand SE. Small-scale dosimetry for alpha particle 241Am source cell irradiation and estimation of γ-H2AX foci distribution in prostate cancer cell line PC3. EJNMMI Phys. 2022;9(1):1-20.
Zhang H, Hou X, Qiao J, Lin J. Determination of 241Am in Environmental Samples: A Review. Molecules. 2022;27(14):1-33.
Tazrart A, Bolzinger MA, Moureau A, Molina T, Coudert S, Angulo JF, et al. Penetration and decontamination of americium-241 ex vivo using fresh and frozen pig skin. Chemico-biological interactions. 2017 Apr 1;267:40-7.
Zhu H, Heinitz S, Binnemans K, Mullens S, Cardinaels T. 225Ac/213Bi radionuclide generators for the separation of 213Bi towards clinical demands. Inorg Chem Front. Published online 2024;11:4499–
White MJV, Briquez PS, White DAV, Hubbell JA. VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes. NPJ Regen Med. 2021;6(1):1-12.
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8(1):1-39.
Verma R, Kumar S, Garg P, Verma YK. Platelet-rich plasma: a comparative and economical therapy for wound healing and tissue regeneration. Cell Tissue Bank. 2023;24(2):285-306.
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences. 2020;77(9):1745-70.
Kumar P, Kumar S, Udupa EP, Kumar U, Rao P, Honnegowda T. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast Aesthet Res. 2015;2(5):243.
Almalki SG. Adipose-derived mesenchymal stem cells and wound healing. Saudi Med J. 2022;43(10):1075-86.
Guo WY, Wang GJ, Wang P, Chen Q, Tan Y, Cai L. Acceleration of diabetic wound healing by low-dose radiation is associated with peripheral mobilization of bone marrow stem cells. Radiat Res. 2010;174(4):467-79.
Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014;32(3):103-15.
Diaz C, Hayward CJ, Safoine M, Paquette C, Langevin J, Galarneau J, et al. Ionizing radiation mediates dose dependent effects affecting the healing kinetics of wounds created on acute and late irradiated skin. Surgeries. 2021 Jan 28;2(1):35-57.
Koukourakis IM, Koukourakis MI. Combining the past and present to advance immuno-radiotherapy of cancer. Int Rev Immunol. 2023;42(1):26-42.
Khalaf MA, Ahmed BM, Al-Sharqi SAH. Irradiation With Cold Atmospheric Direct Plasma: An Innovative Approach to Treating Murine Cutaneous Wounds. Plasma Chem Plasma Process. 2025; 45: 753–
Dons T, Soosairaj S. Evaluation of wound healing effect of herbal lotion in albino rats and its antibacterial activities. Clinical Phytoscience. 2018;4(1):1-7.
Khalaf MA, Mohammed MN, Ahmed BM, Al-Sharqi SAH. Radiation-induced skin regeneration: A comparative efficacy and safety analysis of alpha, beta, and gamma modalities in murine models. Vet World. 2025;18(5):1168-79.
Yang Y, Xie W, Li S, Sun X, Yu B, Fu H, et al. Splint‐free line drawing model: An innovative method for excisional wound models. International Wound Journal. 2023 Sep;20(7):2673-8.
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater. 2022;110(11):2542-73.
Suamte L, Tirkey A, Babu PJ. Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications. Smart Mater Med. 2023;4:243-56.
Niu Y, Li Q, Ding Y, Dong L, Wang C. Engineered delivery strategies for enhanced control of growth factor activities in wound healing. Adv Drug Deliv Rev. 2019;146:190-208.
Eriksson E, Liu PY, Schultz GS, Martins‐Green MM, Tanaka R, Weir D, et al. Chronic wounds: Treatment consensus. Wound repair and regeneration. 2022 Mar;30(2):156-71.
Wilkinson HN, Hardman MJ. Wound healing: Cellular mechanisms and pathological outcomes. In: Advances in Surgical and Medical Specialties. Taylor and Francis; 2023:341-70.
Karas RA, Alexeree S, Elsayed H, Attia YA. Assessment of wound healing activity in diabetic mice treated with a novel therapeutic combination of selenium nanoparticles and platelets rich plasma. Sci Rep. 2024;14(1): 5346.
Cearra I, Herrero de la Parte B, Moreno-Franco DI, García-Alonso I. A reproducible method for biochemical, histological and functional assessment of the effects of ischaemia–reperfusion syndrome in the lower limbs. Sci Rep. 2021;11(1):19325.
Masson‐Meyers DS, Andrade TA, Caetano GF, Guimaraes FR, Leite MN, Leite SN, et al. Experimental models and methods for cutaneous wound healing assessment. International journal of experimental pathology. 2020 Feb;101(1-2):21-37.
Sarojini H, Bajorek A, Wan R, Wang J, Zhang Q, Billeter AT, et al. Enhanced skin incisional wound healing with intracellular ATP delivery via macrophage proliferation and direct collagen production. Frontiers in pharmacology. 2021 Jun 16;12:594586.
Shedoeva A, Leavesley D, Upton Z, Fan C. Wound healing and the use of medicinal plants. Evidence-based Complementary Altern Med. 2019;2019:1-30.
Wurz J, Houreld NN, Pellow J. Homeopathy and Photobiomodulation for Healing Diabetic Wounds in vitro. OBM Integrative Complementary Med. 2021;06(03):1-1.
Khalaf MA, Hmood WJ. Influence of Laser Energies on Tin Oxide Nanoparticles Plasma Parameters Prepared by Nd:YAG Laser. Sci J King Faisal Uni. 2020;21(2):203-206.
Pereira FLC, Ferreira MVL, Mendes P da S, Rossi FM, Alves MP, Alves BLP. Use of a high-power laser for wound healing: A case report. J Lasers Med Sci. 2020;11(1):112-4.
Ahmed BM, Abdulrazaq RA, Khalaf MA, Dakhil OAA. Parameters for FE₂O₃ on Staphylococcus Aureus and Acinetobacter Baumannil. J Eng Sci Technol. 2022;17: 552-62.
Ahmed BM, Sultan MF, Hasan AK, Ahmad SM. Ions energy loss measurements in low and high temperature plasma. IOP Conf Ser: Mater Sci Eng. 2020,928:072094.
Terada K, Nakamura S, Nakao T, Kimura A, Iwamoto O, Harada H, et al. Measurements of gamma-ray emission probabilities of 241, 243Am and 239Np. Journal of Nuclear Science and Technology. 2016 Nov 1;53(11):1881-8.
Donya M, Radford M, ElGuindy A, Firmin D, Yacoub MH. Radiation in medicine: Origins, risks and aspirations. Glob Cardiol Sci Pract. 2014;2014(4): 437-48.
Weng T, Wang J, Yang M, et al. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing. Burns Trauma. 2022;10:1-18.
Berry CE, Brenac C, Gonzalez CE, Kendig CB, Le T, An N, et al. Natural compounds and biomimetic engineering to influence fibroblast behavior in wound healing. International Journal of Molecular Sciences. 2024 Mar 14;25(6):3274.
Wang X, Li R, Zhao H. Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing. Biomedicine and Pharmacotherapy. 2024;170:1-17.
Briquez PS, Hubbell JA, Martino MM. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing. Adv Wound Care (New Rochelle). 2015;4(8):479-89.
Everts PA, Lana JF, Onishi K, Buford D, Peng J, Mahmood A, et al. Angiogenesis and tissue repair depend on platelet dosing and bioformulation strategies following orthobiological platelet-rich plasma procedures: a narrative review. Biomedicines. 2023 Jul 6;11(7):1922.
Shi G, Tong X, Sun W, Fang Z, Chen W, Jiang G, et al. Single-Cell Transcriptome Analysis Reveals Dynamic Populations of Vascular Cells in Neointimal Hyperplasia. Frontiers in Bioscience-Landmark. 2024 May 6;29(5):173.
Schneider NR, Xie T, Glover SE, Tolmachev SY, Dong Z, Spitz HB. Determination of 232Th and progeny in human reticuloendothelial tissues using alpha particle track autoradiographic microdosimetry from Thorotrast. J Radioanal Nucl Chem. 2018;318(1):235-9
Song H, Senthamizhchelvan S, Hobbs RF, Sgouros G. Alpha particle emitter radiolabeled antibody for metastatic cancer: What can we learn from heavy ion beam radiobiology? Antibodies. 2012;1(2):124-48.
Lokhande RM, Vinayak V, Mukhamale SV, Khirade PP. Gamma radiation shielding characteristics of various spinel ferrite nanocrystals: a combined experimental and theoretical investigation. RSC Adv. 2021;11(14):7925-37.
Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv Drug Deliv Rev. 2017;109:102-18.
Pouget JP, Constanzo J. Revisiting the Radiobiology of Targeted Alpha Therapy. Front Med (Lausanne). 2021;8:1-11.
Khalaf, M. Ahmed , Ahmed, B. M. and Al-Sharqi, S. A. H. (2025). Efficiency of Low Alpha Dose Therapy for Achieving Complete Skin Tissue Regeneration. Iranian Journal of Medical Physics, 22(5), 321-330. doi: 10.22038/ijmp.2025.85948.2510
MLA
Khalaf, M. Ahmed, , Ahmed, B. M., and Al-Sharqi, S. A. H.. "Efficiency of Low Alpha Dose Therapy for Achieving Complete Skin Tissue Regeneration", Iranian Journal of Medical Physics, 22, 5, 2025, 321-330. doi: 10.22038/ijmp.2025.85948.2510
HARVARD
Khalaf, M. Ahmed, Ahmed, B. M., Al-Sharqi, S. A. H. (2025). 'Efficiency of Low Alpha Dose Therapy for Achieving Complete Skin Tissue Regeneration', Iranian Journal of Medical Physics, 22(5), pp. 321-330. doi: 10.22038/ijmp.2025.85948.2510
CHICAGO
M. Ahmed Khalaf , B. M. Ahmed and S. A. H. Al-Sharqi, "Efficiency of Low Alpha Dose Therapy for Achieving Complete Skin Tissue Regeneration," Iranian Journal of Medical Physics, 22 5 (2025): 321-330, doi: 10.22038/ijmp.2025.85948.2510
VANCOUVER
Khalaf, M. Ahmed, Ahmed, B. M., Al-Sharqi, S. A. H. Efficiency of Low Alpha Dose Therapy for Achieving Complete Skin Tissue Regeneration. Iranian Journal of Medical Physics, 2025; 22(5): 321-330. doi: 10.22038/ijmp.2025.85948.2510