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Abstract 
 
Introduction 

“Blink” is defined as closing and opening of the eyes in a small duration of time .In this study, we aimed to 

introduce a fast, robust, vision-based approach for blink detection.  
Materials and Methods 

This approach consists of two steps. In the first step, the subject’s face is localized every second and with the 

first blink, the system detects the eye’s location and creates an open-eye template image. In the second step, 

the eye is tracked, using sum of squared differences (SSD). This system can classify the state of the eyes as 

open, closed, or lost, using the SSD-based classifier. If the eyes are closed as in usual blinking, the blink will 

be detected. To classify eyes as closed or open, two adaptive thresholds were proposed; therefore, factors such 

as the subject’s distance from the camera or environment illumination did not affect the system performance. 

In addition, in order to improve system performance, a new feature, called "peak-to-neighbors ratio", was 

proposed.  

Results 
The accuracy of this system was 96.03%, based on the evaluation on Zhejiang University (ZJU) dataset, and 

98.59% in our own dataset.  

Conclusion 

The present system was faster than other systems, which use normalized correlation coefficient (NCC) for eye 

tracking, since time complexity of SSD is lower than that of NCC. The achieved processing rate for ZJU 

dataset was 35 fps. 

Keywords: Eye Localization; Blink Detection; Sum of Squared Differences  
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1. Introduction 
In recent years, many studies have evaluated 

image processing and machine vision fields to 

identify human biometrics. Lip detection, eye 

detection, mouth detection, face detection, face 

tracking, facial expression recognition, face 

recognition, finger print recognition, iris 

recognition, and blink detection are examples of 

these efforts, most of which are face-related.  

“Blink” is defined as closing and opening of the 

eyes in a small duration of time, and is necessary 

for the eyes. Each blinking spreads the tear film 

over the eyes and clears the corneas. Blinking rate 

can be affected by different factors such as eye 

fatigue, injury, medication use, disease, and 

stimulation (light reflection or an object’s impact 

on the eyes) [1]. 

Blink detection allows measurements of eyes’ 

blinking rate and closure duration. Blink 

detection approaches are divided into electro 

ocular-based and image processing-based 

approaches. The electro ocular approaches are 

intrusive since they require the user to place 

recording electrodes near the eyes [2]. On the 

other hand, image processing approaches are non-

intrusive, though most of them cannot detect 

blinks in real time. Therefore, if we can increase 

the speed of image processing approaches, it will 

be more convenient for users to avoid intervening 

objects, applied in former approaches. 

Blink detection has diverse applications, e.g., 

helping disabled individuals control the clicking 

of a mouse, driver drowsiness detection for 

reducing accidents, and fatigue detection for 

preventing monitor-related eye syndrome.  

One of the major problems of blink detection 

methods is datasets, used for testing. In most 

datasets, subjects’ eyes have voluntary behaviors, 

which differ from spontaneous movements. 

Therefore, systems, which use this type of 

datasets, are only applied in laboratories and are 

not applicable in the real world.  

Herein, we review recent studies in relation to 

blink detection and its application. 

Grauman et al. proposed a video-based human-

computer interface, named “Blink Link” [3, 4]. 

Application of this tool helps individuals with 

disabilities to control mouse clicks. This system 

detects blinks and eye closure duration. Long 

blinks act as clicks and short blinks are ignored. 

First, frame subtraction is performed to detect 

motion regions. Then, a pre-trained open-eye 

template is selected from the motion regions, 

using Mahalanobis distance. Eyes are tracked and 

correlation scores between the actual eye and the 

corresponding open-eye template are used to 

detect blinks. The accuracy of this system is 

reported as 95.6%, based on the used dataset. 

However, this tool requires pre-training for 

different distances from the camera for more 

robustness. A disadvantage of this system is that 

changing the camera position requires the system 

to be retrained. Furthermore, the system will not 

be effective if it is used on different eye forms and 

sizes. 

Królak et al.  presented a vision-based system for 

the detection of voluntary eye blinks and 

evaluated its implementation as a human-

computer interface for people with disabilities 

[5]. In their proposed system, face detection is 

implemented by means of Haar-like features and 

a cascade of boosted tree classifiers. The position 

of the eyes in the face image is detected, based on 

certain geometrical dependencies, known for 

human face. The image of the extracted eye 

region is further pre-processed for performing 

eye-blink detection. Correlation coefficient 

changes in time are analyzed in order to detect 

voluntary or spontaneous eye blinks. If the 

coefficient value is lower than the predefined 

threshold value (TL) for any two consecutive 

frames, the onset of the eye blink is detected. The 

accuracy of this system in good illumination 

conditions was reported as 95.35%, despite its 

lower accuracy in poor illumination conditions 

(75.02%). 

 Morris et al. proposed a computer operation 

method, controlled by the subject’s head and eyes 

[6]. This system tracks the user’s motions and 

translates head motions to mouse cursor 

movements and facial expression changes to keys 

pressings. This system uses spatial filtering for 

face localization in image sequences. Then, it 

tracks the face and finds the eyes, based on 

blinking, using variance shadow maps. It then 

detects contours surrounding the eyes and tracks 
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them using the modified Lucas-Kanade tracker 

[7].  

In a study by Heishman et al. , detection of blinks 

with ambiguous movements (e.g., partly closed) 

was introduced [8]. The introduced system 

detects blinks using image flow, and the image 

flow analysis defines the magnitude and direction 

of blink motions. This system uses a 

deterministic, finite state machine, and calculates 

blink parameters (e.g., blink rate) by using the 

motion data. This system is a modification of the 

blink detection system, introduced by Bhaskar et 

al, which subtracts successive frames for blink 

detection [9]. 

In addition, Pan et al. proposed a method that uses 

blinking type as a discriminative parameter of live 

face and photograph in face recognition [10]. 

Based on the boosting algorithm, Pan proposed a 

discriminative feature for eye imaging, named 

"eye closity" which measures the degree of eye 

closure. The accuracy of this system for the 

detection of both eyes was 95.7 %, based on its 

application on Zhejiang University (ZJU) dataset.  

Divjak et al. introduced a model for the 

prevention of computer vision syndrome (CVS) 

[11]. For a more detailed description of CVS, you 

can refer to the references [12]. This model uses 

a machine vision system for detecting the 

subject’s blinking and finally detects the eyes’ 

fatigue. This method captures subjects by using a 

320×240 webcam. It detects abnormal behaviors 

of the eyes, based on blinking patterns. This 

system has 96±7 percentage of accuracy. 

Torricelli et al. introduced a blink-based method 

for eye localization [13]. The average accuracy 

reported for this system was 95.7%, using ZJU 

dataset. Similarly, the goal of the blink detection 

system by Bhaskar et al. was eye localization [9]. 

Danisman also presented a system to monitor 

drivers’ drowsiness and prevent accidents by 

monitoring blink duration variations [14]. This 

system can detect the eyes’ state by using only 

one image frame. This system localizes the face 

and the eyes, using Viola-Jones face detector and 

neural network-based eye detector, respectively. 

After adjustment the face orientation by eye 

direction, the eye region is detected and then, 

contrast stretching is performed on a rectangular 

region of the eye.  

This system subtracts the upper and lower halves 

of the eye region and calculates the cumulative 

sum of differentiated results. If the sum is higher 

than the specified threshold, it means that the eyes 

are open; otherwise, they are considered closed. 

This system does not work well in the presence of 

glasses or illumination variations. Danisman’s 

blink detector was tested on ZJU dataset and 94% 

accuracy with 1% false positive rate (FPR) was 

reported [14]. 

Also, Kim et al. introduced a system which is a 

visual fatigue monitoring system, based on eye 

movements and eye blink detection [15]. The 

proposed system is equipped with an infrared 

single camera and an infrared light source. The 

pupil can be detected by applying a binary 

threshold to the Purkinje image. The threshold is 

automatically selected by two constraints, which 

are the eccentricity of ellipse fitting and the size 

of the pupil. Finally, the total of eye movements 

and the number of eye blinks are measured, using 

pupil positions. 

Recently, Xu et al. presented a blink detector 

system  [16]. In their system, first, face detection 

and face motion tracking are performed and then, 

a three-dimensional cross model is created. For 

this purpose, the middle of the two eyebrows and 

other four points on the face are selected as the 

endpoints. To track the eyes, the geometrical data 

are used. Finally, according to the gray-level 

histogram of eye image, the number of pixels, 

which are darker than a certain threshold, is 

obtained, and open/closed eye detection is 

performed. Xu et al. used a participant with dark 

skin. This algorithm obtained an overall accuracy 

of 99.24% after being tested on a dataset, which 

included videos of 20 black men. 

Recently, Khan et al. presented a system to 

determine the appropriate length for a text line, 

based on blinking [17]. They mentioned that 

while reading a computer screen, the reader loses 

his/her focus first at the end of each line and 

second, while blinking in the middle of the line. 

This method can determine the optimal length of 

the line based on blinking at the end of the line. 

By doing so, they reduced the points of losing 
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focus to the end of each line at which the person 

blinks. However, the proposed system was only 

applied for women. 

The proposed eye-blink detection approach is 

described in section 2. Study results are discussed 

in section 3, and conclusion is given in section 4. 

 

 
Figure 1. An overview of the executive stages of blink 

detector, comprised of two steps 

2. Materials and Methods 
The overall structure of our proposed blink 

detector is  shown in Figure 1 . This detector 

consists of two steps. In the first step, the 

subject’s face is detected and the face motions 

are analyzed. After subtracting successive 

frames, binary image generation, 

morphological filtering (opening and closing), 

connected pair labeling, and invalid-pair 

elimination are performed; if a blink occurs, an 

open-eye template image will be generated.  

In the second step, first, the search region is 

formed, based on the eye location. Then, 

dissimilarity using sum of squared differences 

(SSD) criterion between the open-eye template 

and search region (in which the eyes are closed) 

is calculated. According to the dissimilarity 

value, open- and closed-eye threshold values 

are calculated. Then, successive frames are 

fetched from the video and dissimilarity 

between the open-eye template and the search 

region is calculated by SSD criterion; 

afterwards, the state of the eye (closed, open, or 

lost) is recognized. In the following section, we 

describe all stages of blink detection (Figure 2). 

 

2.1. Step1: Eye localization 
The goal of this step is to find the position of 

the eyes on the face and to generate an open-eye 

template image as an input for the second step. 

In the following section, we describe all the 

stages of this step. 
 

2.1.1. Face detection 

At the beginning of the first step, we used a 

robust, real-time, and well-known face 

detector, named Viola-Jones object detector 

[18]. This face detector has been already 

applied in many previous studies [5, 14, 19]. 

The reason for using this face detector is to 

reduce the number of computations in the eye 

localization stage. 
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Figure 2. Stages of blink detection including the first step along with the relevant images 

 
 

 
In Figure 3, an image of our dataset, called 

spontaneous blink detector (SBD), and face 

region, which is found by Viola-Jones face 

detector, is shown. As it can be seen, the number 

of pixels within the face region is fewer than that 

of the whole image. 

Forward and backward head movements do not 

eliminate the face from the rectangle within one 

second; however, sided head movements cause 

the face to fall out of the rectangle surrounding 

the face. Since sided head movements rarely 

occur, we chose a one-second interval for face 

localization. 
 

2.1.2. Subtraction of Successive Frame Images 

By subtracting the current frame image from 

previous frame images, the moving regions can 

be defined. Due to changes in the eye at blinking 

instances, after subtracting the face image (in 

which the eyes are open) from the image of the 

next frame (where the eyes are closed), an image 

is obtained in which pixels within moving regions 

are near to white (value 1) and those in non-

moving regions are near to black (value 0). Then, 

by applying a square operator on the subtracted 

image, differences become apparent. These two 

operations are performed by applying the 

following equation: 

 (1) Id(x, y, t) = (I(x, y, t) − I(x, y, t − 1))2 

where Id(x, y, t) is the pixel intensity of squared 

image difference at point (x, y) in frame t and 

I(x, y, t) is the pixel intensity of the current frame 

image at point (x, y) in frame t. 

An example of the subject’s face images in two 

successive frames is shown in Figure 2. White 

pixels indicate movements occurring on those 

pixels and black pixels show no movements. 
 

2.1.3. Binary Image Generation 

After subtracting successive frames, binary image 

generation is carried out. For this purpose, based 

on the subtracted image, a threshold for binary 

image generation is obtained using the Otsu 

algorithm. Then, the binary image is generated 

by: 

 

(2) 
Ib(x, y, t) = {

0                , Id(x, y, t) < Thd(t)
1 , Otherwise

 

where Ib is the binary image, x and y are pixel 

coordinates, and Thd is the threshold that is 

obtained using Otsu algorithm. A binary image is 

shown in Figure 2. 

 

 

 

Figure 3. A face detected by Viola-Jones face detector 
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2.1.4. Image Enhancement Using 

Morphological Operators 

For reducing noise in the binary image, which 

may be produced due to various reasons such as 

source light variations, image edge intensity, and 

subject’s body movements, we applied two 

morphological operators (eye opening and 

closing, consecutively). 

The structure element (SE), which has been used 

for these two operators, is a rectangle of 3×7 

pixels (Figure 4). SE shape is selected a little 

smaller than the eye’s size in the binary image. 

However, the size of the SE is enlarged, based on 

the source image size. 

By applying an opening operator on the binary 

image, an image is produced with fewer details. 

In the opening operation, the pieces of binary 

image, which do not fit in SE, are removed; thus, 

only those  pieces which are larger than SE 

remain in the resulting image (Figure 2). In other 

words, binary image noises are removed by 

applying the opening operator. An example of 

applying this operator is presented in Figure 2. 

 

 
Figure 4 . Morphological structure element for opening and 

closing operators 

 

For the compensation of size reduction of pieces 

in the opening operation, we applied a closing 

operator. By closing the image, pieces, which are 

close together, coalesce; this process also fills 

cavities and smoothes the surroundings. For an 

example of a closing image, see Figure 2. 
 

2.1.5. Piece-pair labeling and selection  

After applying morphological operators, some 

pieces may remain in the resulting image (see 

Figure 2), and among these pieces, two may 

belong to the eyes’ location. All the remaining 

pieces are then labeled. The labels are numbered 

from one up to the total number of pieces (see 

Figure 2). These labeled pieces are checked in a 

piece-pair manner to determine if they belong to 

real eyes or not. The number of states that must 

be checked is calculated by:   

(3) C(n, 2) =
n!

2!(n−2)!
  

where n is the number of pieces. For instance, in 

Figure 2 in which five pieces remain after the 

morphological image enhancement, 10 piece 

pairs are checked. 

For the selection of the best pair, which belongs 

to real eyes, all pairs are checked to see if they 

meet the following criteria: 
 

1- The width of the first piece must be less than 

three times of the second piece width and the 

width of the second piece must be less than three 

times of the first piece width : 
1

3⁄ ≤
cw1

cw2
≤ 3                                                   (4) 

Where cw1and cw2  are the widths of the first and 

second pieces, respectively. 

2- The height of the first piece must be less than 

three times of the second piece height and also the 

height of the second piece must be less than three 

times of the first piece height: 

(5)  1 3⁄ ≤
ch1

ch2
≤ 3  

Where ch1 and ch2 are the heights of the first 

and second pieces, respectively. 

3- The width of each piece must be greater than 

its height and less than four times of its height: 
 

(6) 1 ≤
cwi

chi

≤ 4 

where cwi is the width of the i piece and chi is the 

height of the i piece. 

4- The horizontal difference between the centers 

of two pieces must be at most two times of the 

vertical difference: 
λw

λh

≤ 2                                                                (7) 

where λw and λh are the horizontal and vertical 

distances between the centers of two pieces, 

respectively. 

5- The vertical distance between the centers of 

two pieces must be greater than the sum of the 

width of two pieces and less than three times of 

the sum of two pieces’ widths.  

1 ≤
λw

cw1+cw2
≤ 3                                                   (8) 

All of the abovementioned criteria are based on 

the geometrical features of the eye. For a better 
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understanding, the terms, used in the above 

equations, are defined in Figure 5. 

If only one piece-pair could satisfy all of the 

above criteria, it relates to the eyes. 

The value of these criteria is obtained by applying 

each criterion on various and numerous 

valid/invalid samples, and finally, the best one 

with the lowest error is found. Therefore, the 

criteria are designed robustly and accurately. 

One of the advantages of the mentioned criteria is 

their application on various video sizes, since 

their values are relative to video size and are not 

constant.  

Both eyes show the same behavior at a blinking 

instance; therefore, for reducing the number of 

calculations, we continue step 2 with only one 

eye. One of the two pieces, which has a larger 

area, is passed to the second step.  

 

 
Figure 5. Parameters of the best piece-pair selection; (A) 

subject’s face (his eyes are closed during blinking); (B) 

one piece-pair along with the definition of parameters  

 

2.1.6. Open-eye template image 

After piece-pair selection, the eye template image 

is created. In the frame of blinking (t), eyes are 

closed; hence, in five frames earlier (frame t −
5), the eyes are open and are perfect for open-eye 

template generation in a 30 fps video. If this 

number is small, the eyes are likely to be closed 

and if this number is large, the subject’s 

movement leads to selecting a bad location and 

the eyes may be closed due to the previous blink. 

The open-eye template image size is chosen a 

little larger than the selected piece (best piece-pair 

selection). A generated open-eye template image, 

which is the output of the first step of our 

proposed blink detection, is shown in Figure 2. In 

                                                 
1Sum of Squared differences 

addition, some open-eye template images, which 

are obtained from various datasets, are shown in 

Figure 6. 

 
Figure 6. Open-eye template examples with various sizes of 

the eye, luminance changes, with or without glasses 

 

2.2. Step 2: Eye tracking and blink 

detection 
The input of this step is the output of the first step, 

namely the open-eye template image. In this step, 

eye tracking and blink detection are performed 

simultaneously. Based on the dissimilarity value 

between the open-eye template image and search 

region (using SSD1 criterion), the system tracks 

the eye. Two threshold values are calculated in 

the first frame of this step. By these threshold 

values, the dissimilarity level in each frame 

determines three states of the eye: 1) open, 2) 

closed, and 3) lost. If in several successive frames, 

the dissimilarity value locates a closed-eye state, 

a blink is detected. All stages of this step are 

shown in Figure 1.  

Although blink detection can be done in the first 

step of this experiment, it is carried out in the 

second step (eye tracking and blink detection), 

due to the following reasons: 

1- In the second step, the calculations are done on 

a limited region surrounding the eyes, but in the 

first step (eye localization), the calculation 

includes the whole face and face detection runs 

every second; therefore, the execution speed of 

the first step is lower than that of the second step. 

2- In the second step, error rate is lower than the 

first step (if the first step is used as a blink 

detector), since the search region in the second 

step is smaller and hence the probability of error 

is lower. 
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3- In the second step, more information is at hand 

about eye closure duration.  
 

2.2.1. Eye tracking 

At the beginning of the second step, the location 

of the search region is determined. The initial 

search region is considered a little larger than the 

size of open-eye template image; however, the 

centers exactly fall on each other. In the eye 

tracking stage, we try to keep the eye (left or right) 

in the center of the search region. In other words, 

the search region will be updated in each frame to 

contain the eye in the new location. To update the 

search region in each frame, dissimilarity value 

between the open-eye template and all possible 

sub-images within the search region (with a size 

equal to the template) is calculated; according to 

the minimum value, the new location of the eye is 

found.  

We used SSD function to obtain the dissimilarity 

value between open-eye template and all possible 

sub-images within the search region. This 

function first subtracts all pixels of the first image 

from those of the second image; then, it squares 

these differences and the result is the sum of 

squared differences. The SSD value between the 

two images (with an equal size) is calculated by: 

 

 (9) D =  ∑(I1(x, y) − I2(x, y))
2

x,y

 

where D is the dissimilarity value, I1 and I2 are 

the two equal-size images and x,y are pixel 

position. 
 

 
Figure 7. Geometrical description of SSD parameters 

 

Although previous studies [3, 4] have applied 

normalized correlation coefficient (NCC) for the 

search template image in the search region, SSD 

has been used in our proposed system for the sake 

of fewer computations.  

In order to find the most similar sub-image 

(within the search region) to the open-eye 

template image, for all possible sub-images (e.g., 

u×v as shown in Figure 7), the SSD value is 

calculated by: 

(10) D(u, v) =  ∑(I(x + u, y + v)

x,y

− T(x, y))
2
 

where I(x, y) and T(x, y) are intensities of the 

pixels at position (x, y) in the search region and 

template image, respectively; u and v are the 

movement freedom of the sub-image in the search 

region. D(u, v) shows dissimilarity intensity 

between the template image and a sub-image with 

its top left corner in (u, v) point of the source 

image. A geometrical description of this stage is 

shown in Figure 7.  

The more the open-eye template and the best 

match of the search region are dissimilar, the 

higher D will be. Three examples of eye tracking 

in the search region are depicted in Figure 8. As it 

can be seen, the lowest level of dissimilarity 

between the open-eye template and sub-images in 

the search region belongs to the one in which the 

eye is open (Figure 8, left). However, in the sub-

image in which the eye is closed, dissimilarity 

value is neither high nor low; in the sub-image in 

which the eye is lost, dissimilarity value is high. 

 
Figure 8. Eye tracking in the search region; (top) open-eye 

template; (bottom) location of the best match between the 

template and sub-images in three states: open, closed, and 

lost in the search region  

 

2.2.2. Blink Detection Using Adaptive 

Thresholds 

For blink detection, our system in each frame 

classifies the state of the eye as 1) open, 2) closed, 

or 3) lost, based on dissimilarity value. For this 

purpose, we have used two thresholds, named 

open-eye threshold (Thopen) and closed-eye 

threshold (Thclose) ; the open-eye threshold is 
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lower than the closed-eye threshold. In each 

frame, one of these three states occurs: 

1-Dissimilarity value is less than the open-eye 

threshold ( D < Thopen): In this state, 

dissimilarity between the open-eye template and 

the most similar sub-image in the search region is 

insignificant; in other words, they are highly 

similar, thus, the eye is open. 

2-Dissimilarity value is greater than the open-eye 

threshold and less than the closed-eye threshold 

(Thopen < D < Thclose): In this state, the open-

eye template and the most similar sub-image in 

the search region are almost similar; therefore, the 

eye is closed. 

3-Dissimilarity value is greater than the closed-

eye threshold (Thclose < D): In this state, the 

open-eye template is not similar to the most 

similar sub-image in the search region; therefore, 

it is concluded that the tracker has lost its target 

(eye). After losing the location of the eye, the first 

step of our system restarts to locate the eyes and 

generates a new open-eye template (Figure 1). 

By drawing dissimilarity values in successive 

frames, a curve as in Figure 9 is drawn in which 

the horizontal axis denotes the frame number and 

the vertical axis indicates the dissimilarity value. 

There are two approaches for defining open-eye 

and closed-eye thresholds. In the first approach, 

two constant values are assigned to these 

thresholds, similar to Grauman’s studies [3, 4]. In 

the second used approach, the thresholds are 

calculated, based on factors such as illumination, 

distance between the subject’s face and the 

camera, color of the face, and glasses or beard on 

the face.  

The advantages of adaptive thresholds are listed 

below: 

1- Since SSD-based dissimilarity value is not 

within a limited range in various conditions (such 

as illumination changes), the constant threshold 

values do not work well for our system.  

2- Eye closure intensity at a blinking moment 

varies in different subjects, i.e., a person may 

almost blink, while another person completely 

blinks. Hence, SSD value in these conditions is 

not equivalent. 

3- For open-eye template generation, based on the 

new lighting circumstances, the thresholds are 

calculated. Therefore, lighting variations do not 

affect the performance of this adaptive threshold-

based system.  

 

 

 

 

 
Figure 9.  Dissimilarity curve; the triangles are real blink occurrences and the circles on the peaks are the detected blinks by our 

system. Open-eye and closed-eye thresholds are shown by dashed lines. 
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Figure 10.  The difference between voluntary and spontaneous blinks on the dissimilarity curve 

 
4- Since the distance between the individual and 

the webcam leads to various face image sizes, 

different SSD values are obtained in different 

distances. Therefore, by using the adaptive 

thresholds, , the subject’s distance from the 

webcam and his/her forward or backward 

movements from the camera do not affect the 

overall system performance. 

For calculating open-eye and closed-eye 

thresholds, we proposed a parameter, namely 

initial open-closed eye dissimilarity, which shows 

how much the open-eye template is similar to the 

closed eye in terms of SSD value in the first frame 

of the second step: 

 (11) D0 = ∑(I(x, y) − T(x, y))
2

x,y

 

where D0 is the initial open-closed dissimilarity 

value, I is the closed-eye image within the search 

region (five frames after the frame of open-eye 

template generation), and T is the open-eye 

template. Note that the sizes of I and T images are 

equal. 

Based on the initial open-closed dissimilarity, our 

system calculates two thresholds, using the 

following equations: 

  (12) ThOpen  = 0.6  ∗ D0  

  (13) ThClose = 1.15 ∗ D0 

where ThOpen is the open-eye threshold and 

 ThClose is the closed-eye threshold.  

A dissimilarity curve is drawn in Figure 9, which 

contains 800 frames (about 26.6 seconds).  As it 

can be seen, in frames 3000-3290, the second step 

(eye tracking and blink detection) is performed. 

In frame 3290, the curve exceeds the closed-eye 

threshold and the system informs us that the eye 

is lost. Then, the first step (eye localization) starts 

again. In frame 3480, with the first blink 

occurrence, the open-eye template image is 

recreated and the second step restarts. By 

restarting the second step (frame 3480), the 

subject’s distance from the camera is changed and 

hence, the thresholds are created, based on the 

new conditions. 

2.2.3. Ignoring long blink durations 

Since the goal of this study was the detection of 

spontaneous blinks, voluntary blinks longer than 

the spontaneous ones, were ignored. We 

calculated the average number of frames, in 

which the eye is not fully open, which is between 

three and six frames (in a 30 fps video). Hence, 

we considered closed eyes as blinks if only they 

were closed in 10 successive frames, at most. In 

other words, if dissimilarity curve remained more 

than 10 frames between the two thresholds, no 

blink was detected.  
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Figure 11. Incorrect blink detection caused by the curve proximity to the open-eye threshold 

 
Figure 10 shows a dissimilarity curve of a 

voluntary (longer than the usual blink) and a 

spontaneous blink (shorter than 10 frames). As it 

can be seen in Figure 10, by the first entrance of 

dissimilarity curve to the closed-eye region (in 

frame 46), the curve remains at frame 10 and 

hence, the system detects and ignores the 

voluntary blink. However, in frame 98, the curve 

stays at frame 3; thus, the system considers it as a 

spontaneous blink. The triangle shows the 

occurrence of a real blink and the circle depicts 

the detected blink; the star is a long blink, which 

the system ignores. 
 

2.2.4. The Proposed Feature: Peak-To-

Neighbors Ratio 

One problem, which may persist in the second 

step of our blink detection system, is the 

proximity of dissimilarity curve to the open-eye 

threshold, without eye blinking. With the 

proximity of dissimilarity curve to the open-eye 

threshold, any swinging behavior of the curve 

leads to its entrance to the closed-eye region 

(between the open-eye and closed-eye thresholds) 

and our system incorrectly detects this entrance as 

a blink. The main reason causing this problem is 

the slow and nominal change of subject’s distance 

from the camera. 

At the blinking moment, the change in 

dissimilarity curve is sudden and salient. 

Therefore, we introduced a new feature named 

"peak-to-neighbors ratio". When the value of this 

feature is higher, a true blink is detected and if the 

feature’s value is insignificant, the system ignores 

the blink. For more understanding, an example is 

shown in Figure 11, which shows one wrongly 

detected blink among eight correctly detected 

ones. 
Note that these incorrect detections increase the 

FPR of blink detection system and hence, it 

decreases the system’s overall accuracy. For 

solving this problem, our proposed feature is the 

ratio of peak height at blinking time (t) to the 

average of dissimilarity value changes in the last 

10 frames, obtained via the following equations:  

First, the average of dissimilarity values in the last 

10 frames is calculated:  

(14) mscore(t) =
1

10
∑ d(i)

t−2

i=t−11

 

where mscore(t) is the average dissimilarity value 

of the last 10 frames in frame t, and d(i) is the 

dissimilarity value in frame i. 
Then, the relative height of the dissimilarity value 

of the blinking frame is calculated by: 

(15) h(t) = d(t) − mscore(t) 
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where h(t) is the relative height of the curve in 

frame t. 
Then, the average of dissimilarity value changes 

in the last 10 frames is calculated by: 

(16) mchange(t) =
1

10
∑ (d(i) − d(i − 1))

t−2

i=t−12

 

where mchange(t) is the average of dissimilarity 

changes in the last 10 frames. 

Finally, the final feature value in frame t is 

calculated by: 

(17) f(t) =
h(t)

mchange(t)
 

 

 
Figure 12. Examples of individuals in three used datasets: 

(top left) ZJU dataset, (top right) Talking Face dataset, 

and (bottom) our SBD dataset 
 

3. Results  
In order to measure the accuracy of our proposed 

blink detector, a program was written in 

MATLAB software (2009) and implemented on 

a Core2Dou 2.0GHz Intel CPU with 2GB RAM, 

running on a Windows 7 operating system. 

The proposed system of eye localization and 

blink detection was tested on three video datasets. 

The first dataset is a well-known blink dataset, 

named  ZJU dataset [10]. This dataset consists of 

80 gray-scale videos of 20 individuals (duration 

of 260 seconds and 255 blinks, in total). The 

second video dataset is Talking Face Video, 

which contains a one-person colored video, with 

the duration of 166 seconds including 63 blinks 

[20]. The third one is our generated dataset, 

named SBD, which contains colored videos of 59 

individuals (9,353 seconds and 1303 blinks, in 

total). All the three dataset videos were in 

320×240 pixels. Some video snapshots of these 

three datasets are shown in Figure 12. 

In order to create our SBD dataset, we used a 

Canon digital camera (PowerShot A710 IS) to 

capture videos of subjects at the rate of 30 Frame 

Per Second (fps). The video resolution was 

originally 640×480, but for testing our method, 

we reduced it to 320×240 pixels. The captured 

videos were colored with a pixel depth of 24 bits. 

The dataset obtained for the evaluation contained 

videos of people with different facial features (all 

the subjects were standing in these videos). All 

participants were males, with or without glasses, 

and some of them were bearded. The subjects 

were asked to move as they would normally do 

when reading a text on a monitor. The light source 

was different for each individual. 
 

3.1.1. Blink detection results 

Some results of the first step (open-eye template 

images) are presented in Figure 6. Note that a 

person may have several open-eye templates in a 

video sequence at different times, since after the 

eye is lost in the  second step, the first step 

recreates an open-eye template image. In 

addition, Figure 12 shows three different 

individuals in three datasets. In this figure, you 

can see the search region and open-eye template 

in a rectangle. 

Instead of using fixed thresholds, we used 

adaptive ones for detecting the blinks. Here, for 

showing the drawbacks of constant open-

eye/closed-eye thresholds in contrast with the 

adaptive ones, we implemented the Grauman’s 

blink detection method [3]. Grauman used NCC 

for dissimilarity evaluation. In the mentioned 

blink detection system [3], open-eye threshold is 

fixed and it is considered to be 0.55; closed-eye 

threshold is considered to be 0.8. 
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Figure 13. Constant threshold drawback; (Top) subject’s images with different distances from the camera; (Middle) 

similarity curve obtained by Grauman’s method [3]; (Bottom) dissimilarity curve obtained by our system. The triangles 

are real blinks (Ground Truth) and the circles are the detected blinks. 

 

For comparing our proposed system with 

Grauman’s [3], we chose a video from SBD 

dataset and applied both approaches. 

Dissimilarity curve of the proposed system and 

similarity curve of Grauman’s are shown in 

Figure 13 (middle and bottom). Note that the 

dissimilarity curve of our system behaves as 

upward peaks at blinking instances, as shown in 

Figure 13  (middle); on the other hand, the 

similarity curve of Grauman’s system behaves 

as downward peaks at blinking instances, 

indicated in Figure 13 (bottom). The thresholds 

are drawn as two parallel horizontal lines. In 

Figure 13 (bottom), given the use of adaptive 

thresholds, these two lines vary according to 
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different conditions; however, in Figure 13 

(middle), these two lines are continuous, 

considering the application of constant 

thresholds.  

Five images of a subject at different moments 

are shown in Figure 13 (top), in which the 

subject’s distance from the camera is normal, a 

little near, very near, a little near, and normal 

again (from left to right). The subject is near a 

little in frame 1100 and comes very near in 

frame 1200; therefore, the similarity curve of 

Grauman's system [3] enters the range of two 

thresholds and remains in this range until frame 

2250. The reason is that the subject has 

smoothly changed his distance from the camera 

and the similarity value is neither high nor low. 

However, in our proposed system, this problem 

is corrected by adaptive thresholds (see Figure 

13, bottom). As it is indicated, the eye is lost in 

frame 1200 and the first step starts again with 

recreating the open-eye template. 
 

3.1.2. Blink Detection Performance 

The results showed that our system could 

operate with an overall accuracy of 96.03%, 

87.12%, and 98.59% on ZJU, Talking Face 

Video, and SBD datasets, respectively. 

 
 

 
Real state  

Blink No blink 

Detected 
Blink  TP FP 

No blink  FN TN 

Figure 14. Terms used in performance analysis 
 

To evaluate our system, we evaluated 

performance with three measures. These 

measures are precision, sensitivity, and 

accuracy. Our blink detection measures are 

listed in Table 1. These measures were 

calculated using equations (18),  (19), and (20): 
 

(18) Precision =
TP

TP + FP
 

 

 

(19) 
Sensitivity =

TP

TP + FN
 

 

 

(20) 
Accuracy =

TP + TN

TP + TN + FP + FN
 

 

TP, TN, FP, and FN are defined in Figure 14. 

Table 1. Performance of the current blink detection 

system, tested on three video datasets 

 

Dataset 

SBD  ZJU 
Talking 

Face 

Precision 87.52 % 94.8 % 94.11% 

Sensitivity 81.27 % 92.94 % 87.12 % 

Overall accuracy 98.59 % 96.03 % 97.99 % 

 

In Table 2, the accuracy of our system and other 

blink detection systems is presented. Since 

Grauman’s system [3] is a well-known 

approach for blink detection and it is cited in 

several papers, we chose it as an approach for 

comparison. Also, Divjak’s blink detection 

system [11] and some other blink detection 

systems are listed in Table 3.  
 

3.1.3. Blink detection speed  

Our proposed system used SSD value instead of 

NCC. Note that SSD calculation is simpler than 

NCC calculation. SSD execution order is O(n), 
whereas that of NCC is O(n2). The simplicity 

of SSD leads to fast eye tracking in the second 

step; therefore, the overall speed of our 

proposed system increases. 

In Table 3, the speed of the proposed system is 

presented; speeds of the first step and the 

second step are also listed. In addition, the 

average speed of the system is shown in the 

third row.  

As it can be seen in Table 3, other blink 

detection systems such as Grauman’s [3] and 

Divjak’s [11] are also tested on SBD and ZJU 

datasets and their corresponding speed values 

are listed. These results are based on different 

CPU characteristics, mentioned in the caption 

of Table 3. Compared to other approaches, the 

speed of our proposed system, after being tested 

on ZJU dataset, was higher; the frame rate of 

the current method reached 35.04 fps. 
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4. Discussion and Conclusion 
The algorithm presented in this paper can detect 

the face, track the eyes, and detect blinks at 35 

fps in a medium-level personal computer, with 

98.59% accuracy.  

 The first innovation of this system is that 

conditions are not limited. In other words, 

lateral movements of the subject, severe 

lighting changes, diversity of subjects' 

characteristics (e.g., gender, skin color, eye 

color, eye shape, eye size, and blinking 

behaviors), different orientations of the head, 

and presence of distracting objects on the face 

(e.g., glasses and beard) do not affect the 

accuracy of our blink detection system. This is 

due to the application of adaptive thresholds for 

classifying eyes as open or closed.  

The second advantage of the proposed system 

is the increased processing rate (35 fps). This 

speed enhancement is related to the use of SSD 

instead of NCC for tracking the eyes (SSD and 

NCC time complexities are 𝑂(𝑛), and  𝑂(𝑛2), 

respectively). In addition, a new feature named 

"peak-to-neighbors ratio" was proposed in the 

blink detection stage to enhance the overall 

accuracy of blink detection.  

For future studies, it can be used both eyes to 

achieve higher accuracy. 

 

Table 2. Comparison between the overall accuracy of our method and other approaches, tested on ZJU, SBD, and Talking 

Face datasets 

 

The 

proposed 

method 

Graum

an[3] 
Divjak 

[11] 
Danisman 

[14] 

Torricelli 

[13] 
Pan [10] 

HMM 

[10] 

Cas- Adaboost 

[10] 

ZJU 96.03 92.95 97±7 94.8 95.7 95.7 63.4 78.1 

Talking Face 87.12 83.45 88 ---- ---- ---- ---- ---- 

SBD 98.59 95.33 ---- ---- ---- ---- ---- ---- 

Table 3. Speed of the proposed blink detection approach in comparison with that of other blink detection methods (in 

terms of fps) 

 

The proposed method 
2 

Grauman [3]2  

(implemented in this 

study) 

Torricelli 

[13]3 
Divjak 

[11] 
Pan [10]1 

 
ZJU SBD ZJU SBD ZJU ZJU ZJU 

Step 1: Eye localization 17.39 23.49 ---- ---- ---- ---- ---- 

Step 2: Eye tracking and 

blink detection 
41.58 21.41 ---- ---- ---- ---- ---- 

Fps average 35.04 22.28 8.92 8.51 30 20 - 30 20 

1 :CPU 2.0 GHz, RAM 1 GB 

2 :CPU 2.0 GHz, RAM 2 GB                        ZJU:  size  320×240, with a total of 12,000 frames 
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