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Abstract 
 
Introduction 
As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability 

to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model 

for avascular tumor growth, coupled with a discrete model of angiogenesis. 

Materials and Methods 

In the avascular growth model, tumor is considered as a single mass, which uptakes oxygen through 

diffusion and invades the extracellular matrix (ECM). After the tumor reaches its maximum size in the 

avascular growth phase, tumor cells may be in three different states (proliferative, quiescent and apoptotic), 

depending on oxygen availability. Quiescent cells are assumed to secrete tumor angiogenic factors, which 

diffuse into the surrounding tissue until reaching endothelial cells. The mathematical model for tumor 

angiogenesis is consisted of a five-point finite difference scheme to simulate the progression of endothelial 

cells in ECM and their penetration into the tumor.  

Results 
The morphology of produced networks was investigated, based on various ECM degradation patterns. The 

generated capillary networks involved the rules of microvascular branching and anastomosis. Model 

predictions were in qualitative agreement with experimental observations and might have implications as a 

supplementary model to facilitate mathematical analyses for anti-cancer therapies. 

Conclusion 

Our numerical simulations could facilitate the qualitative comparison between three layers of tumor cells, 

their TAF-producing abilities and subsequent penetration of micro-vessels in order to determine the 

dynamics of microvascular branching and anastomosis in ECM and three different parts of the tumor.  
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1. Introduction 
Cancer constitutes a collection of disorders, 

which share the common feature of 

uncontrolled cellular growth [1]. Most tissues 

in the body can give rise to cancer; some can 

even yield several types of cancer, each with 

its unique features. The salient feature of 

cancer cells is that the mechanisms which 

control growth, proliferation and death of cells 

are disrupted often due to mutations [1].  

Certain types of cancer form solid tumors of 

aberrant and mutated cells [2]. Development 

of a primary solid tumor begins with the 

transformation of a single normal cell as a 

result of mutation in a certain key gene [3]. 

Further growth leads to the development of an 

avascular tumor consisting of approximately 

106 cells [3]. Initially, a solid tumor relies on 

diffusion in the adjacent vessels to supply 

oxygen and nutrients and remove waste 

products [1]. As the tumor grows, the demand 

for oxygen and nutrients increases until the 

flux of oxygen through the tumor surface is 

too small to supply the entire mass of cells [1]. 

A necrotic core of dead cells is developed at 

the center of the tumor, and eventually, the 

tumor stops growing and remains dormant 

(diameter of 1-3 mm).  

In the tumor, the number of dying cells 

counterbalances the number of proliferating 

cells [1]. Tumors only grow further if the 

cancerous cells acquire one of the so-called 

hallmarks of cancer, i.e., the ability to induce 

angiogenesis through mutation [2, 4, 5]. 

Angiogenesis or neovascularization, which is 

the formation of blood vessels from a pre-

existing vasculature, is a crucial component of 

many mammalian growth processes [6]. 

Unlike vasculogenesis, which depends on 

precursor cells [7], or intussusceptive 

angiogenesis, which splits the blood vessels 

[8], angiogenesis is the process through which 

new blood vessels are formed from pre-

existing ones via migration and proliferation 

mechanisms [2, 9]. Cancer, vascular diseases, 

stroke, neurodegenerative disorders, diabetes, 

inflammation, asthma, obesity and arthritis are 

a group of conditions involving angiogenesis. 

Angiogenesis also occurs in normal 

physiology in response to exercise or in the 

process of wound healing [10]. 

The first stage of tumor-induced angiogenesis 

involves the secretion of a number of 

chemicals into the surrounding tissue through 

the cells of a solid tumor, collectively known 

as tumor angiogenesis factors (TAFs) [11]. 

TAFs diffuse through the tissue space and 

form a chemical gradient between the tumor 

and the existing vasculature [6]. Upon 

reaching any adjacent blood vessels, 

endothelial cells, lining these vessels, are 

induced to degrade the basement membranes 

of the parent vessel and then migrate through 

the disrupted membranes towards the tumor 

[6].  

The initial response of endothelial cells to 

TAFs is a chemotactic one, initiating the 

migration of cells towards the tumor [12]. The 

cells continue to make their way through the 

extracellular matrix (ECM), which consists of 

the interstitial tissue, collagen fiber, 

fibronectin (FN) and other components. 

Among these components, FN is of grave 

significance in the process of angiogenesis. In 

fact, FN, as a major component of ECM in 

both soluble and insoluble forms, is involved 

in a number of important functions such as 

wound healing, cell adhesion, blood 

coagulation, cell differentiation and cell 

migration [13]. FN in its soluble form (pFN) 

can be abundantly found in the plasma and 

other body fluids, while insoluble or cellular 

FN (cFN) is a major component of ECM [14].  

It has been revealed that endothelial cells 

synthesize and secrete cellular FN, which 

remains bound to the matrix and does not 

diffuse [14-18]. The main function of secreted 

FN is the adhesion of cells to the matrix and 

directional movements of a number of cell 

types [19-21]. Therefore, in addition to the 

chemotactic response of endothelial cells to 

TAF concentration, there is a complementary 

haptotactic response to the gradient of 

adhesiveness in bound FN, termed as 

haptotaxis [6].  

As endothelial cells migrate towards the 

tumor, they can form loops and branches and 
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eventually connect with the tumor, penetrate 

into it, complete the angiogenesis process and 

supply the tumor with its required nutrients to 

grow further. Consequently, angiogenesis may 

provide the possibility for tumor cells to find 

their way into the circulation and reach 

secondary sites in the body, resulting in 

metastasis [3]. 

A crucial part of the invasive/metastatic 

process is the ability of cancer cells to degrade 

the surrounding tissue or ECM [22-24]. The 

degradation process is a complex mixture of 

macromolecules, some of which such as 

collagens are believed to play a structural role 

and others such as laminin, FN and vitronectin 

are important for cell adhesion, spreading and 

motility [3]. A number of matrix degradative 

enzymes (MDEs) such as the plasminogen 

activation system (P.4) and the large family of 

matrix metalloproteinase have been described 

[25-27]. 

In recent years, considerable progress has been 

made in the development of mathematical 

models, both temporal and spatiotemporal, for 

tumor growth and angiogenesis, using 

continuous and discrete approaches. Some of 

these models have described the avascular 

tumor growth and its invasion to the 

surrounding tissue [3, 28-30]. Others have 

described the most important features of 

tumor-induced angiogenesis with different 

approaches ranging from continuous, 

deterministic frameworks in one-space 

dimension to discrete, stochastic two-

dimensional models [2, 6, 31-39]. Also, in 

some models, the process of 

avascular/vascular tumor growth has been 

coupled with the angiogenesis process [39-41]. 

In this study, we aimed to couple the tumor 

angiogenesis process with avascular tumor 

growth, particularly ECM invasion by tumor 

cells in the avascular growth stage. The 

coupling of these two important phases of 

tumor growth was accomplished by TAFs, 

secreted from tumor cells under hypoxic 

conditions. As the tumor reaches its maximum 

avascular size, three layers with different 

physiological properties can be recognized. 

The capillary structures produced in ECM and 

different tumor layers were investigated in this 

model.  

According to different physiological 

characteristics of ECM and heterogeneous 

tumor environment, we estimated two 

important features of tumor angiogenesis 

including microvascular branching (MVB) and 

microvascular anastomosis (MVA), with 

respect to time. We also examined the relative 

importance of ECM degradation as a 

mechanism of invasion in producing different 

microvascular structures within the tumor and 

ECM. The model permitted both qualitative 

and quantitative comparisons with in vivo 

networks. 

 

2. Materials and Methods 
2.1. Avascular Tumor Growth and Invasion 

Model 
In this model, we focused on three key 

parameters: tumor cells, the host tissue (ECM) 

and MDE associated with tumor cells. The 

mathematical model consisted of a system of 

partial differential equations describing ECM 

degradation by MDE activation and the 

migratory response of tumor cells. 

Initially, we considered a concentration of 

tumor cells, which grow through the diffusion 

of oxygen and nutrients from the surrounding 

tissue. To invade ECM, tumor cells produce 

MDE, resulting in the destruction of ECM. 

The invasion model was based on the 

mathematical model on generic solid tumor 

growth, which was assumed at the avascular 

stage for simplicity.  

By definition, haptotaxis is the directed 

migratory response of cells to gradients of 

fixed or bound chemicals (i.e., non-diffusible 

chemicals) [3]. Therefore, the directed 

movement of tumor cells to FN gradients can 

be determined as follows: 

 𝐽ℎ𝑎𝑝𝑡𝑜 = 𝑋 𝑇𝛻𝐹                                          (1)  

Where,  𝑋 > 0 is the constant haptotactic 

coefficient. T is tumor cell density and 𝛻𝐹 is 

FN gradient. Another contribution of the 

invasion model to tumor cell motility is the 

assumed random motion, a flux of the form: 

 𝐽𝑟𝑎𝑛𝑑𝑜𝑚 = − 𝐷𝑇∇ T                                (2) 



Farideh Hosseini et al. 

 

Iran J Med Phys., Vol. 12, No. 3, Summer 2015 148 

Where, 𝐷𝑇  is a constant or a function of either 

MDE or ECM concentration. The conservation 

equation for tumor cell density (T) is therefore 

calculated as follows: 
𝜕𝑇

𝜕𝑡
+ ∇. (𝐽𝑟𝑎𝑛𝑑  +  𝐽ℎ𝑎𝑝𝑡𝑜) = 0                     (3) 

The partial differential equation governing the 

tumor cell motion in the absence of cell 

proliferation is: 
∂T

∂t
= ∇. (DT(f,m)∇T ) − x1 ∇. (T ∇F)        (4) 

Where 𝐷𝑇(𝑓,𝑚) is the random motility 

coefficient of tumor cells. We selected 

𝐷𝑇(𝑓,𝑚) = 𝐷𝑛 as a constant for the initial 

simulations. 

As noted earlier, MDEs degrade ECM upon 

contact and therefore, the degradation process 

can be modeled by the following simple 

equation: 
∂F

∂t
= − δ MF,                                               (5) 

Where 𝛿 is the ECM degradation coefficient 

and a positive constant. M is the MDE 

concentration.  

Active MDEs are produced or activated by 

tumor cells. They diffuse throughout the tissue 

and undergo some form of decay, either 

passive or active [3]. The equation governing 

the evolution of MDE concentration is 

therefore as follows: 
𝜕𝑀

𝜕𝑡
= 𝐷𝑀∇

2𝑀+  𝜇𝑇 − 𝜆1𝑀                       (6) 

Where 𝐷𝑀 is the MDE diffusion coefficient 

and a positive constant, 𝜇𝑇 denotes MDE 

production by tumor cells and 𝜆1𝑀 refers to 

the natural decay of MDE. Therefore, as 

described earlier, the complete system of 

equations describing the interactions between 

tumor cells, ECM and MDEs is: 

∂T

∂t
= DT∇2T ⏞    

random motility

− x1∇. (T∇F)⏞      
haptotaxis

 , 

∂F

∂t
= − δMF⏞

degradation

                                        (7) 

∂M

∂t
=  DM∇2M ⏞    

degradation

+ μT⏞
production

− λ1M⏞
decay

 

To solve the above set of equations 

numerically, we used dimensionless parameter 

values for the simulations. We rescaled 

distance with an appropriate length scale L, 

time with 𝜏1 = 𝐿
2 𝐷1⁄   (where 𝐷1 is a 

reference chemical diffusion coefficient), 

tumor cell density with T0, ECM density with 

F0 and MDE concentration with M0 (T0, F0, 

M0 are appropriate reference variables). 

Therefore, by setting 

T̃ =
T

T0
,          F̃ =

F

F0
,         M̃ =

M

M0
,       t̃ =  

t

τ1
 

in equation (7) and dropping the tildes for 

notational convenience, a scaled set of 

equations was obtained: 

∂T

∂t
= dT∇2T ⏞    

random motility

−  γ1∇. (T∇F)⏞      
haptotaxis

  , 

∂F

∂t
= − η1MF⏞  

degradation

 ,                                      (8) 

∂M

∂t
=  dM∇2M ⏞    

degradation

+ α1T⏞
production

− β1M⏞
decay

 

Where included parameters were defined as 

follow: 
 d_T = D_T ⁄ D_1 , γ_1 = (x_1 F_0) ⁄ D_1 , η_1 =
τ_1 M_0 δ, d_M = D_M ⁄ D_1 , α_1 = (τ_1 μT_0) ⁄
M_0 , and β_1 = τ_1 λ_1.  

It was assumed that tumor cells, and 

consequently MDEs, remain within the 

domain of the evaluated tissue, and therefore, 

no-flux boundary conditions of form (9) for 

the cells and form (10) for MDEs were 

imposed on the boundaries of the domain:  

𝜉.(−dT∇T + Tγ1∇F)=0                                 (9) 

𝜉.(−dM∇M)=0                                             (10) 

Where 𝜉is an appropriate outward unit normal 

vector? 

For numerical simulations, we discretized the 

abovementioned system of partial differential 

equations, using standard finite difference 

methods. We applied Euler finite difference 

approximations to discretize the continuous 

system (8), resulting in the following system 

[3, 41]: 

Tl,m
q+1

= Tl,m
q
P0 + Tl+1,m

q
P1 + Tl−1,m

q
P2

+ Tl,m+1
q

P3 + Tl,m−1
q

P4 

Fl,m
q+1

= Fl,m
q
[1 − k1η1Ml,m

q
]                        (11) 
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Ml,m
q+1

= Ml,m
q
[1 −

4k1DM

h2
− k1α1Tl,m

q
(1 −

Tl,m
q
)] +

k1DM

h2
 [Ml+1,m

q
+Ml−1,m

q
+Ml,m+1

q
+

Ml,m−1
q

]P0 = 1 −
4k1DT

h2
− 

k1γ1

h2
[Fl+1,m
q

+

 Fl−1,m
q

− 4 Fl,m
q
+ Fl,m+1

q
+ Fl,m−1

q
]           (12) 

Where the subscripts specify the location on 

the grid and the superscripts determine the 

time steps. Also, l and m are positive 

parameters, which specify the position of 

variables on the two-dimensional grid, i.e., x = 

lh and y = mh. Time discretization is 

represented by t = q𝑘1. 

The coefficient 𝑃0, which is proportional to the 

probability of no movement, takes the 

following form [3]:
 

Also, coefficients 𝑃1, 𝑃2, 𝑃3 and 𝑃4, which are 

proportional to the probabilities of moving 

left, right, up and down, take the following 

forms, respectively: 

P1 = 
k1D1

h2
− 

k1kγ1

4h2
[Fl+1,m
q

− Fl−1,m
q

]         (13) 

P2 = 
k1kD1

h2
+ 

k1kγ1

4h2
[Fl+1,m
q

− Fl−1,m
q

]       (14) 

P3 = 
k1D1

h2
− 

k1γ1

4h2
[Fl,m+1
q

− Fl,m−1
q

]           (15) 

P4 = 
k1D1

h2
+ 

k1γ1

4h2
[Fl,m+1
q

− Fl,m−1
q

]           (16) 

We proposed an initial ECM concentration, 

which was suitable for the angiogenesis 

model. We also assumed that the concentration 

of cellular FN, as a major component of ECM 

within the tumor, would degrade due to tumor 

invasion. Based on these assumptions, we 

considered the following initial conditions for 

tumor cell, ECM and MDE concentrations, 

respectively: 

T(x, y, 0) {
exp (−

r2

ε1
)                  0 ≤ r ≤ 0.1

0                                      0.1 ≤ r ≤ 1
                                          

(17) 

F(x, y, 0) = 0.4 − 0.2 T(x, y, 0)                   (18)  
M(x, y, 0) = 0.5 T(x, y, 0)                          (19) 

Where r is the radius of the tumor and 𝜀1 is a 

positive constant, taken as 0.005 [3, 6]. 

 r=√(x − 1)2 + (y − 0.5)2                        (20) 

We solved the set of partial differential 

equations (11) with boundary conditions (9) 

and (10) and initial conditions (17)-(19), 

simultaneously.  

Experimental studies have indicated that 

tumors with up to 1-2 mm diameters are 

usually avascular, while they become 

vascularized beyond this range [42, 43]. 

Therefore, we assumed that the angiogenesis 

process initiates as the tumor reaches its 

maximum avascular size (~2 mm in diameter).  

Throughout the process of avascular tumor 

growth, each tumor cell may be in a different 

state. By the end of avascular tumor growth, 

we can distinguish three regions in the tumor. 

For the simulation of tumor-induced 

angiogenesis in the computational domain, we 

assumed that different concentrations of TAF 

would be secreted by the cells, depending on 

the region of tumor cells.  

2.2. Tumor-Induced Angiogenesis Process 
In the angiogenesis model, we focused on 

three key variables including TAF, FN and 

endothelial cells. Angiogenesis process 

consists of a system of partial differential 

equations, describing FN production and 

uptake, TAF uptake by endothelial cells and 

the chemotactic and hepatotoxic effects of 

endothelial cells in response to TAF and FN 

gradients, respectively. 

We denoted the endothelial cell density per 

unit area by n, TAF concentration by c and FN 

concentration by f. The movement of 

endothelial cells was assumed to be influenced 

by three factors: random motility, chemotaxis 

in response to TAF gradient and haptotaxis in 

response to FN gradient. Therefore, the 

equation describing the changes in endothelial 

cell density is as follows [6]: 

JEC = Jrandom + Jchemotaxic + Jhaptotaxic 
∂n

∂t
= ∇ . [Dn∇n − n (x(c)∇c + ρ0∇f)]        (21) 

Where, 𝐷𝑛, x(c) and 𝜌0 denote random 

migration, chemotaxis and haptotaxis 

coefficients, respectively. Also, x(c) is a 

function of form: 

  𝑥(𝑐) =
x0k1

(k1+c)
                                             (22) 

As mentioned earlier, as soon as TAF is 

secreted, it diffuses into the surrounding tissue 

and ECM and sets up a concentration gradient 

between the tumor and any pre-existing 

vasculature. We assumed that the steady state 

of TAF gradient between the tumor and 
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adjacent vessels could provide the initial 

conditions for TAF concentration profile. As 

endothelial cells migrate through ECM in 

response to this gradient, some TAF uptake 

and binding occur by the cells. This process 

can be easily demonstrated by the following 

consumption function [6]: 
∂c

∂t
= −λ2nc                                                 (23) 

Where 𝜆2 is a positive constant, representing 

TAF consumption rate. 

Endothelial cells themselves secrete FN, which 

binds to ECM and does not diffuse. Therefore, 

an equation, which describes the influence of 

endothelial cell density on FN concentration, 

does not contain any diffusion terms. 

Moreover, there are some connections between 

FN and endothelial cells as they migrate 

towards the tumor [14]. FN production and 

degradation processes can be modeled by the 

following equation [6]: 
∂f

∂t
= wn − μ2nf                                           (24) 

Where 𝑤 and 𝜇2 are positive constants, 

characterizing the production rate of FN by an 

individual endothelial cell and degradation of 

FN, depending on the density of endothelial 

cells, respectively. Therefore, as partially 

described in the previous sections, a complete 

system of equations, describing the response 

of endothelial cells, TAFs and FN, is as 

follows: 

∂n

∂t
=  Dn∇

2n⏞    
random motility

− ∇. (
x0k1
k1 + c

 n∇c)
⏞          

chemotaxis

− ∇. (ρ0n∇f)⏞      
haptotaxis

 

∂f

∂t
= wn⏞
production

− μ2nf⏞
uptake

                              (25) 

∂c

∂t
=  − λ2nc⏞

uptake

 

In order to solve the above system of equations 

numerically, dimensionless parameter values 

were used for the simulations. We rescaled 

distance with L (the distance between the 

parent vessel and tumor), time with 𝜏2 =
 𝐿2 𝐷𝐶 ⁄ (where Dc is the TAF diffusion 

coefficient), endothelial cell density with n0 

and TAF and FN concentrations with c0 and f0, 

respectively (where n0, c0 and f0 are 

appropriate reference variables). Therefore, a 

non-dimensional system was obtained as 

follows [6]:
 

∂n

∂t
= ∇ . [D2∇n − n (

x2
1 + α2c

∇c + ρ∇f)] 

∂c

∂t
= −η2nc                                                 (26) 

∂f

∂t
= β2n − γ2nf 

And parameters were defined as follows: 

 D=
Dn

Dc
  , x =  

x0c0

Dc
 , α2 = 

c0

k1
 , ρ =  

ρ0f0

Dc
,  

β =  
wL2n0

f0Dc
 , γ =  

μ2L
2n0

Dc
,  η =  

λ2L
2n0

Dc
              

(27) 

No-flux conditions were imposed on the 

boundaries of the unit square for endothelial 

cells: 

𝜉.(−𝐷2∇𝑛 + n (x(c)∇c + ρ∇f))=0             (28) 

It should be noted that no boundary conditions 

can be imposed on c and f. 

As mentioned earlier, for the most internal 

cells of tumor, oxygen concentration is below 

the critical threshold and hypoxia leads to cell 

apoptosis; therefore, these cells secrete TAF at 

a lower level. The next layer of the tumor 

includes quiescent (hypoxic) cells, which do 

not proliferate and die in case oxygen 

concentration is insufficient for the cells. In 

this state, the cells produce the highest level of 

TAF, which diffuses into the surrounding 

tissue until it reaches the endothelial cells [44]. 

TAF secretion is due to the fact that in the 

steady state, the number of living cells, which 

compete for oxygen, increases, resulting in the 

increased demand for oxygen.  

The outer layer of the tumor consists of 

proliferative cells. Oxygen concentration is 

sufficient for these cells to proliferate and they 

can progress through the cell cycle and 

duplicate [44]; therefore, cells in this layer do 

not secrete any TAFs. We estimated the initial 

TAF concentration in the steady state in 

different tumor regions to model this 

condition.  

We considered three different profiles for the 

initial TAF concentration in the angiogenesis 

model. These profiles included a relatively 

constant low level of TAF with a radius of 0.1 

(showing necrotic cells), a continuous 

ascending profile indicating TAF production 
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by quiescent (hypoxic) cells and a continuous 

descending TAF profile showing the diffusion 

of TAF, secreted by hypoxic cells into the 

surrounding tissue. 

In this study, we considered two different 

steady state profiles for the initial FN 

concentration in order to determine the inner 

and outer regions of the tumor, respectively. 

We also assumed that FN concentration (as a 

major macromolecule of ECM) inside the 

tumor region is equivalent to ECM, destroyed 

as a result of avascular tumor growth. 

Therefore, we used the ECM concentration 

from the tumor invasion model (described in 

section 2.1) for determining FN concentration 

in the tumor region. A descending exponential 

function was also used to model both cellular 

and plasma FN concentrations in the steady 

state in ECM. Therefore, the initial condition 

for TAF concentration was as follows: 

 

c(x, y, 0) =

{
 

 
0.7071                        0 ≤ r ≤ 0.1
v −0.5884

v −r
                 0.1 ≤ r ≤ 0.3

(
v−r

v−0.1294
)
2

               0.3 ≤  r ≤ 1

                                                        

(29) 

Where r is defined as equation (20) and v is 

defined as follows: 

 v= 
√5−0.1

√5−1
                                                                                                                          

(30) 

The initial condition for FN was also 

described: 
f(x, y, 0) =

{
concentration of ECM from the avascular growth model        0 ≤ r ≤ 0.5

Ke
−
(x)2

ε2                                                                                                       0.5 ≤ r ≤ 1
         

(31) 

Where K and ε2 are positive constants, 

calculated to be 0.75 and 0.45, respectively 

[6]. 

The discrete model of angiogenesis 

incorporated rules for sprout branching and 

anastomosis and contained an element of 

stochasticity for the movement of cells. This 

discrete model was derived from a discretized 

form of partial differential equations of the 

system (25). By using the Euler finite 

difference methods [41], the resulting 

coefficients of the five-point finite difference 

stencil were used to determine the probability 

of the movement of an individual cell in 

response to its local milieu. The full 

discretized model is described as follows [6]: 
nl,m
q+1

= nl,m
q
P0 + nl+1,m

q
P1 + nl−1,m

q
P2 + nl,m+1

q
P3 + nl,m−1

q
P4 

fl,m
q+1

= fl,m
q
[1 − k2γ2nl,m

q
] + kβ2nl,m

q
       (32) 

cl,m
q+1

= cl,m
q
[1 − k2η2nl,m

q
] 

Where the subscripts specify the location on 

the grid and the superscripts specify the time 

steps. Also, l and m are positive parameters, 

which specify the position of variables on the 

two-dimensional grid, i.e., x=lh and y=mh. 

Time discretization was represented by t=q𝑘2. 

The exact forms of P0–P4 involve functions of 

FN and TAF concentrations in the vicinity of 

an individual endothelial cell [6]. These 

coefficients can be thought to be proportional 

to the probability of endothelial cell being 

stationary (P0) or moving left (P1), right (P2), 

upward (P3) or downward (P4). The coefficient 

P0, which is proportional to the probability of 

no movement, takes the following form:  

P0 = 1 −
4k2D2

h2
+ 

k2α2x(cl,m
q
)

4h2(1+α2cl,m
q
)
[(cl+1,m

q
− cl−1,m

q
)2 +

(cl,m+1
q

− cl,m−1
q

)2] −         
k2x(cl,m

q
)

h2
(cl+1,m
q

+ cl−1,m
q

−

4cl,m
q
+ cl,m+1

q
+ cl,m−1

q
) − 

k2ρ

h2
(fl+1,m
q

+ fl−1,m
q

−

4fl,m
q
+         fl,m+1

q
+ fl,m−1

q
)                             (33) 

P1 = 
k2D

h2
− 

k2

4h2
[x(cl,m

q
)(cl+1,m

q
− cl−1,m

q
) +

ρ(fl+1,m
q

− fl−1,m
q

)]                                    (34) 

Also, coefficients 𝑃1, 𝑃2, 𝑃3 and 𝑃4, which are 

proportional to the probabilities of moving 

left, right, upward and downward have the 

following forms, respectively: 

P2 = 
k2D

h2
+ 

k2

4h2
[x(cl,m

q
)(cl+1,m

q
− cl−1,m

q
) +

ρ(fl+1,m
q

− fl−1,m
q

)]                                  (35) 

P3 = 
k2D

h2
− 

k2

4h2
[x(cl,m

q
)(cl,m+1

q
− cl,m+1

q
) +

ρ(fl,m+1
q

− fl,m−1
q

)]                                  (36) 

P4 = 
k2D

h2
+ 

k2

4h2
[x(cl,m

q
)(cl,m+1

q
− cl,m+1

q
) +

ρ(fl,m+1
q

− fl,m−1
q

)]                                   (37) 

 

2.2.1. Sprout Branching and Anastomosis 
Branching, as a process through which new 

sprouts are formed from capillary cells, and 

anastomosis, a process by which tip cells from 

one sprout merge with capillary cells from 



Farideh Hosseini et al. 

 

Iran J Med Phys., Vol. 12, No. 3, Summer 2015 152 

another sprout, were explicitly incorporated to 

the discrete model. By meeting the following 

three conditions, a capillary sprout can branch 

at its tip and generate a new sprout [6]: 

1. The age of the current sprout should be 

greater than the age of threshold branching 𝛹 

(equivalent to a dimensional time of 0.75 

days). 

2. Sufficient space should locally exist for a 

new sprout to form (we assumed a forward 

diagonal branching pattern). 

3. The endothelial cell density should be 

greater than the threshold level 𝑛𝑏 (𝑛𝑏 ∝
1

𝑐𝑙,𝑚
). 

If all these three conditions were satisfied, 

each sprout tip was assumed to have a 

probability 𝑃𝑏, of generating a new sprout 

(branching); this probability was dependent on 

the local TAF concentration. The sprout 

branching probabilities, associated with 

various TAF concentration ranges, were 

selected on a qualitative basis, as presented in 

Table 1 [6]. 

As the sprouts progress towards the tumor, 

driven by the movement probabilities 

presented in (31) at each time step of the 

simulation, endothelial cells at the sprout tips 

can move to any four orthogonal neighbors on 

the discrete grid. If during one of these 

movements, another sprout is encountered, 

anastomosis may occur [6]. The schematic 

diagram for sprout branching and anastomosis 

is presented in Figure 1. 

3. The simulation analysis 

The simulations of the model were carried out 

on a 200× 200 grid, which is a discretization 

of the unit square [0, 1] × [0, 1], with a space 

step of h =0.005, representing a tissue with 

dimensions of [0, 2 mm] × [0, 2 mm]. We 

assumed that the tumor has reached its 

maximum pre-vascular growth state, which is 

equivalent to a tumor with 0.5 radius on the 

dimensionless unit square (equal to a tumor 

with a radius of 1 mm), and is centered at x=1 

and y=0.5. 

 
 

 

 

 

Table1. Sprout tip branching probabilities as a function 

of local TAF concentration [6] 

Sprout tip branching 

probability 

TAF concentration 

0.0 ≤0.3 

0.2 [0.3-0.5] 

0.3 [0.5-0.7] 

0.4 [0.7-0.8] 

1 [0.8-1] 
 

[TAF: Tumor angiogenesis factor] 

 
Figure 1.The schematic diagram for sprout branching 

and anastomosis 

 

Figure 2 presents the schematic diagram of the 

model domain, including the multi-layered 

tumor on the right boundary of the domain, 

endothelial cells lining the parent blood vessel 

on the left boundary and ECM located in 

between. According to our unit of 2 mm 

length, discretization of a unit square with a 

space step of h =0.005 implied that h is 

equivalent to a dimensional length of 10 μm, 

i.e., approximately the length of one or two 

endothelial cells [6, 45]. 
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Figure 2. The schematic diagram of the model domain 

including a parent blood vessel, a multi-layered tumor 

and endothelial cells lining the blood vessel. The 

discretization of the simulation domain is also 

illustrated. 

 

All numerical solutions presented in this 

section were obtained from finite difference 

approximations in systems (8) and (25) with 

boundary and initial conditions (9)-(10) and 

(17)-(19) for the avascular tumor growth 

model and conditions (28) and (29)-(31) for 

the angiogenesis model, respectively. The 

iterative steps for the numerical simulations 

were as follows (Figure 3): 

Step 1: We set the boundary and initial 

conditions for the avascular tumor growth 

model as given in equations (9)-(10) and (17)-

(19), respectively. 

Step 2: We solved the discrete system (11) 

numerically for each time step of the 

simulation process to obtain F and M values 

and then generated the five coefficients P0–P4, 

according to equations (12)-(16).  

Step 3: We updated the value of T from the 

five generated coefficients (P0–P4) for each 

point of the domain at each time step. 

Step 4: The data obtained from this model 

were applied as some initial conditions for 

coupling with the angiogenesis model at the 

time of maximum avascular tumor growth. In 

this step, we set the degraded ECM 

concentration as the initial FN concentration 

inside the tumor and the initial TAF 

concentration was determined, based on the 

progression of tumor cells in this situation. 

Moreover, we set the boundary and initial 

conditions for the angiogenesis model as given 

in (28) and (29)-(31), respectively. We also 

assumed that five sprouts, located randomly 

along the parent vessel, were initially activated 

by TAF. 

Step 5: We solved the discrete system of (32) 

numerically for each time step of the 

angiogenesis simulation process to obtain the 

values of f and c and then generated the 

coefficients P0–P4, according to equations 

(33)-(37).  

Step 6: We computed the probability ranges 

by summing the coefficients P0–P4 to produce 

five ranges: R0 = [0, P0] and Rj =

[∑ Pi , ∑ Pi]
j
i=0

j−1
i=0  (j = 1 − 4). Then, we 

generated a random number between 0 and 1. 

The individual endothelial cell remained 

stationary or moved left, right, up or down if 

the random number fell in R0, R1, R2, R3 or R4 

ranges, respectively. Therefore, each 

endothelial cell was restricted to move to one 

of its four orthogonal neighboring grid points 

or remain stationary at each time step. 

Step 7: We assessed the conditions for sprout 

branching or anastomosis in each time step.  

Step 8: We assessed the stop criteria. In this 

step, if the vessels reached the end of the 

network, the process ended; otherwise, the 

program continued to step 5. 

Parameter values used in the simulations were 

dimensionless, as presented in Table 2.  Figure 

4 shows the initial conditions for tumor cell, 

MDE and ECM concentrations, used in the 

avascular tumor growth model.  
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Table 2. The summary of model parameters 

Parameters Description Value* Equation Reference 

dT Tumor cell motility 0.001 (8) [3] 

dM MDE diffusion coefficient 0.001 (8) [3] 

γ1 Tumor haptotactic coefficient 0.005 (8) [3] 

η1 ECM degradation 10 (8) [3] 

α1 MDE production 0.1 (8) [3] 

β1 MDE decay 0 (8) [3] 

D2 EC random motility coefficient 0.00035 (26) [6] 

x2 EC chemotactic coefficient 0.38 (26) [6] 

ρ EC haptotactic coefficient 0.34 (26) [6] 

η2 TAF uptake 0.1 (26) [6] 

β2 Fibronectin production 0.05 (26) [6] 

γ2 Fibronectin uptake 0.1 (26) [6] 

α2 Chemotactic sensitivity coefficient 0.6 (26) [6] 
 

*All values are dimensionless. [MDE: matrix degradative enzyme, ECM: extracellular matrix, EC: endothelial 

cell, TAF: tumor angiogenesis factor] 

  

 

 

 
Figure 3. The flow chart of iterative steps for numerical simulations of the model 
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Figure 4. The initial conditions for tumor cell, matrix degradative enzyme (MDE) and extracellular matrix (ECM) 

concentrations, used in the avascular tumor growth model 

 

 
 

Figure 5. Spatiotemporal evolutions of tumor cell invasion, resulting from the numerical simulation of the system (8) 

 

3. Results  
As mentioned earlier, we first ran the 

avascular tumor growth code to obtain the 

concentrations of the three set variables at the 

time of maximum avascular tumor growth. 

Figure 5 indicates the gradual tumor cell 

growth and invasion in four snapshots at the 

time of tumor cell density distribution. As 

expected, the main body of the tumor slowly 

invaded due to haptotactic migration.  

At the leading edge, a region of higher cell 

density was detected, which could gradually 

break into two separate clusters. As tumor 

cells grew, they produced MDE to degrade the 

surrounding tissue. Figures 6 and 7 represent 

the gradual changes in the MDE and ECM 

concentrations for the corresponding time in 

Figure 5. The ECM profile clearly indicates its 

degradation by MDEs. 
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Figure 6. Spatiotemporal evolutions of matrix degradative enzymes (MDEs), resulting from the numerical simulation of 

the system (8) 

 
Figure 7. Spatiotemporal evolutions of extracellular matrix (ECM), resulting from the numerical simulation of the 

system (8) 

At time t=10 (46 days), the tumor reached the 

edge of the domain, which was equal to a 

tumor with a 2 mm diameter. As mentioned 

earlier, in this situation, the demand for 

oxygen and nutrients by tumor cells is beyond 

diffusion from the surrounding tissue; 

consequently, tumor cells cease to grow. 

Hypoxic tumor cells start to secrete TAF for 

initiating the angiogenesis process. The TAF 

secreted by hypoxic tumor cells diffuses in the 

ECM to reach the neighboring blood vessels. 

Therefore, there is a delay between the time of 

maximum avascular tumor growth and the 

initial angiogenesis.  
The mentioned time interval is proportional to 
multiple factors such as TAF diffusion 
coefficient, TAF degradation rate and the 
distance between the tumor and blood vessel. 
After this time interval, sprouts slowly initiate 
and the process of angiogenesis starts. We 
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assumed that TAF has reached its steady-state 
concentration at the start of angiogenesis. 
Therefore, the concentration of TAF, secreted 
by hypoxic cells, at the steady state was 
regarded as the initial TAF concentration for 
the angiogenesis model.  
We also assumed that plasma FN diffuses 
from the parent vessel in response to the 
destruction of vascular basement membrane. 
The initial conditions for TAF and FN are 
demonstrated in Figure 8. Figure 9 indicates 
the spatiotemporal evolution of five sprout 
tips, depicted by the numerical simulation of 
the coupled model.  
At t=1, i.e., 1.5 days after the initiation of 
angiogenesis and 47.5 days after the initiation 
of avascular tumor growth (we assumed no 
delay between the time when the tumor 
reached its maximum avascular size and the 
initiation of angiogenesis), the sprouts grew 
nearly in parallel with each other and formed 

some orders of branching without any 
anastomosis. Once the sprouts reached a 
certain distance from the parent vessel, they 
tended to incline towards each other and 
finally formed tip-to-tip and tip-to-sprout 
fusions at about t=3, i.e., 4.5 days after the 
initiation of angiogenesis and 50.5 days after 
the initiation of avascular tumor growth. 
Due to the circular geometry of TAF 
concentration profile and the effect of 
chemotaxis in the model, the sprouts and their 
branches converged towards the middle of the 
domain until t=5 (53.5 days after avascular 
tumor growth). As expected, the model could 
follow the "brush-border” effect, due to the 
increased frequency of branching at the edge 
of the network as the capillary sprouts 
approached the tumor. This procedure was 
reported by Folkman et al. [11, 43] and our 
results followed their experimental findings. 
 

 

(a)                                                        (b) 

Figure 8. The initial concentrations of (a) tumor angiogenesis factor (TAF) in the multi-layered tumor and (b) 

fibronectin (FN) for the initiation of angiogenesis 

 

 
Figure 9. Spatiotemporal evolutions of sprout tips, resulting from the numerical simulation of the coupled model  
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Some orders of capillary branching and 

anastomosis were reported by t=3. Expectedly, 

the brush-border effect on the boundary of the 

tumor was observed at t=5. Some micro-vessels 

penetrated into the tumor and converged to the 

center of the domain. These micro-vessels then 

distributed around the region of hypoxic tumor 

cells due to the uniform concentration of TAF in 

this area and insufficient FN concentration. A 

few micro-vessels might have also entered the 

necrotic region. 

One of the interesting findings of our 

simulations was that the number of micro-

vessels, penetrating into the tumor, was not in 

balance with the outer micro-vessels. Therefore, 

when ECM degradation was significant, the 

newly formed vessels tended to encapsulate 

rather than penetrate the tumor; therefore, they 

were less effective in delivering nutrients [31]. 

This micro-vessel, settling down on the surface 

of the tumor, could cause some problems in the 

treatment process, as well.  

The high number of redundant micro-vessels, 

which do not penetrate into the tumor, can 

change the dilution of delivered drugs and 

influence the efficiency of treatment. As 

depicted in Figure 9, some sprouts settled 

down on the edge of the tumor at t=5 and did 

not penetrate into the tumor until the end of 

simulation. Although the sprouts remained on 

the tumor boundary, others penetrated into the 

tumor and produced a high density of 

capillaries in the region of proliferative cells 

and converged towards the middle of the 

domain in response to TAF, secreted by semi-

necrotic (hypoxic) cells.  

After penetration into the hypoxic cell region, 

capillary vessels distributed around the 

hypoxic cells, given the uniform concentration 

of TAF and insufficient FN concentration. A 

few micro-vessels might have also entered the 

necrotic region. The three regions of the tumor 

changed to well-, semi- and non-vascularized 

regions after the angiogenesis process. 

In order to investigate the effect of ECM 

degradation coefficient η1 on microvascular 

structures within the tumor, the coefficient was 

increased by a factor of 5, i.e., 𝜂1=50, 

representing the increased ECM degradation 

by MDEs, produced throughout tumor cells. 

By using the same parameters presented in 

Figure 5, the four snapshots in Figures 10 and 

11 were produced.  

 

 

 
Figure 10. Spatiotemporal evolutions of tumor cell invasion, resulting from the numerical simulation of the system (8) 

with parameter values mentioned in Figure 5 (exceptfor 𝜂1=50) 
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Figure 11. Spatiotemporal evolutions of extracellular matrix (ECM), resulting from the numerical simulation of 

the system (8) with parameter values, depicted in Figure 5 (except for 𝜂1=50) 

 
Figure 12. Spatiotemporal evolutions of sprout tips, resulting from the numerical simulation of the coupled model with 

parameter values, depicted in Figure 9 (except for 𝜂1=50). The brush-border effect was observed on tumor boundary at 

t=5; however, due to the significant degradation of ECM, micro-vessels did not penetrate into the tumor. 

 

In this case, tumor cells remained more 

localized and did not invade the tissue as 

much. The initiation of angiogenesis process 

with this data resulted in the production of a 

capillary structure, as depicted in Figure 12. In 

this situation, ECM degradation by MDEs was 

significant, and therefore, all newly formed 

vessels tended to settle down on the tumor 

boundary and not penetrate into the tumor. 

This property of microvascular structures not 

only causes some problems in nutrient 
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delivery, but also challenges the treatment 

process. 

As shown in Figure 13, we investigated the 

effect of decreasing ECM degradation 

coefficient rate 𝜂1 by a factor of 100, i.e., 

η1=0.1, on the tumor invasion pattern. The 

results indicated a considerable change in 

tumor density distribution. At t=2, a small 

cluster of cells migrated slowly from the main 

body of the tumor and continued to invade 

ECM at the leading edge.  

As illustrated in Figure 13, particularly Figure 

14, decreased ECM degradation coefficient 

rate 𝜂1 resulted in a slower invasion of ECM 

by tumor cells in a way that the tumor did not 

reach its maximum avascular size at t=10. By 

increasing the duration of simulation to about 

t=12, maximum tumor size was reported at the 

end of the avascular growth phase. Figure 15 

represents the produced microvascular 

structure in this model. In this case, all micro-

vessels on the boundary entered the tumor 

with a high density of branching and 

anastomosis in the region of proliferative cells.  

Despite the high concentration of TAF in the 

hypoxic tumor cells, none of the micro-vessels 

entered this region due to insufficient FN 

concentration in ECM. The sharp descending 

edge of ECM in Figure 14 represents the high 

level of ECM degradation in this region. MDE 

concentration profiles in the last two 

simulations closely resembled those obtained 

in Figure 6, unless some changes were 

reported in concentration values.  
 

 

Figure 13. Spatiotemporal evolutions of tumor cell invasion, resulting from the numerical simulation of the 

system (8) with parameter values, depicted in Figure 5 (except for  𝜂1=0.1) 
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Figure 14. Spatiotemporal evolutions of extracellular matrix (ECM), resulting from the numerical simulation of the 

system (8) with parameter values, depicted in Figure 5 (except for 𝜂1=0.1) 

 

Figure 15: Spatiotemporal evolutions of sprout tips, resulting from the numerical simulation of the coupled 

model with parameter values as depicted in Figure 9 (except for 𝜂1=0.1)  

 

The brush-border effect on the tumor boundary 

was observed at t=5. There was a balance 

between the number of micro-vessels on the 

tumor boundary and micro-vessels penetrating 

into the tumor. However, the significant 

degradation of ECM in the region of hypoxic 

tumor cells prevented micro-vessels from 

penetrating the hypoxic cell region. 

As mentioned earlier, the produced capillary 

network was complex with a high density of 

branching and anastomosis, which are 

important structural features in the treatment 

process. The high level of branching leads to 

the dilution of drug delivered to the tumor and 

can affect the efficiency of treatment. The 

number of microvascular loops or anastomosis 
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inside the tumor can also affect the amount of 

drug delivered to the tumor. 

In Figure 16, we estimated the probability of 

MVB in ECM and different parts of the tumor, 

with respect to time 𝜂1 = 10. As illustrated, at 

t=5, i.e., 7.5 days after the initiation of 

angiogenesis and 53.5 days after avascular 

tumor growth, the highest degree of branching 

occurred at the outer edge of the tumor, which 

shows the brush-border effect in proliferative 

cells. Also, a well-vascularized area was 

formed at the most outer layer of the tumor. 

This extensive new capillary bed can supply 

not only the nutrients for the rapid growth of 

tumor tissues, but also the metastatic pathways 

for tumor cells. Therefore, the high branching 

rate on the edge of the tumor reduces the 

efficiency of drugs delivered to the tumor, 

while the high branching rate within the tumor 

increases the probability of tumor cell 

migration.  

There was also a lower level of new branching 

in the hypoxic region, which shows that all the 

vessels, which entered this region, continued 

to progress without any new branching 

patterns. This probability was equal to zero for 

the necrotic region, which is due to the 

absence of any micro-vessels in this area. 

 

 

Figure 16: Comparison of microvascular branching in the extracellular matrix (ECM) and different parts of the 

tumor. It can be observed from the “total region” plot that the maximum branching occurred between t=3 and 

t=4, indicating the brush-border effect at the outer edge of the tumor. 

 

 
Figure 17. The number of microvascular anastomosis (MVA) in different parts of the simulation area 

 

Figure 17 shows the number of MVA with 

respect to time in different parts of the 

simulation area. There were some orders of 

anastomosis in different regions, except the 

necrotic cell region. Some of these formed 

loops within the tumor facilitated blood 

circulation and exchange of oxygen, nutrients 

or even drugs. Other loops occurred in ECM 
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and bypassed the drug, with no significant 

effects on tumor growth. As depicted in Figure 

17, a large number of loops were present in 

ECM, which is one of the important causes of 

failure in drug treatment. 

 

4. Discussion 
Phenomenological models can provide a 

framework for understanding physical 

systems, exploring the effects of different 

hypotheses and advancing our conceptual 

understanding and even our predictive 

abilities. In this study, we investigated the 

process of tumor growth, using an avascular 

tumor growth model, coupled with a tumor-

induced angiogenesis model. These coupled 

mathematical models enable us to have a 

better estimation of tumor invasion state.  

We developed the tumor angiogenesis model, 

based on the model proposed by Anderson and 

Chaplain [6]. However, we modified the initial 

conditions for FN and TAF concentrations in 

order to simulate microvascular structures 

inside and outside the tumor. For this purpose, 

we first simulated the avascular tumor growth 

to obtain the ECM degradation profile within 

the tumor region and used the data provided by 

this simulation to initiate the tumor 

angiogenesis process. 

 Simulation of avascular tumor growth not 

only presents some of the initial conditions for 

the angiogenesis model, but also provides an 

appropriate estimation of the spatiotemporal 

progression of solid tumors. We simulated a 

multi-layered tumor, consisting of three 

different layers at the steady state during 

maximum avascular growth, based on TAF 

concentration released by hypoxic cells in the 

middle layer. Moreover, the morphology of 

produced networks in these three layers and 

ECM was investigated, based on various ECM 

degradation patterns. The generated capillary 

networks involved the rules of MVB and 

MVA. 

Numerical coupling of avascular growth and 

angiogenesis process was one of the novelties 

of this study. Although a similar coupled 

model has been proposed in the literature [3], 

our suggested model allowed the extension of 

some of the results reported in literature [6], 

since spatial heterogeneity (a three-layered 

tumor) was introduced in the avascular tumor 

during angiogenesis.  

As the findings indicated, under certain 

parameter regimes, vascularization penetrates 

accordingly into the three layers of the tumor. 

This result was not reported in the study by 

Anderson et al. [6], since their angiogenesis 

model did not include different layers of 

avascular tumor. We also modified the 

orthogonal sprout branching patterns with 

forward diagonal branching patterns in the 

angiogenesis model for more compliance with 

reality. With this modification, we observed 

faster progression of sprouts towards the tumor 

and more realistic structures.  

Figure 18 shows both the orthogonal and 

forward diagonal patterns of sprout branching. 

As illustrated in this figure, when one of the 

branched sprouts was placed along the main 

body (the three last cases in the orthogonal 

branching pattern), some rebounds could 

occur, which is rarely observed in in vivo 

experiments.  

 

Figure 18. The schematic diagram indicating the 

comparison between orthogonal and forward diagonal 

sprout branching 

 

This model provided the basic data which 

could be useful for future studies. The 

estimations of MVB and MVA could be used 

as appropriate indicators for the investigation 

of treatment effectiveness. It is also interesting 
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to develop a model to simulate vascular tumor 

growth and metastasis by modeling the effects 

of blood flow through the produced capillary 

networks. 

In this model, for simplicity, no delay was 

assumed between the time when the tumor 

reached its maximum avascular size and the 

initiation of angiogenesis. As mentioned 

earlier, this delay is proportional to TAF 

diffusion and decay rate and the distance of 

neighboring blood vessels from the tumor (the 

factor which can influence even the occurrence 

of angiogenesis). We also assumed the initial 

formation of five sprouts, which all started to 

progress from random positions, 

simultaneously. These assumptions could be 

modified in order to model a more realistic 

process for sprouting angiogenesis. The 

authors aim to proceed with their research on 

these two issues. The results will be reported 

in future studies.  

 

5. Conclusion 
In this study, we derived an algorithmic 

framework for a hybrid model, which coupled 

a two-dimensional continuous mathematical 

model for avascular tumor growth with a 

discrete model of angiogenesis. We performed 

several numerical simulations by using our 

algorithms. Our numerical simulations could 

provide a qualitative comparison between 

three layers of tumor cells, their TAF-

producing abilities and subsequent penetration 

of micro-vessels. Moreover, we could gain an 

insight into the dynamics of MVB and MVA 

in ECM and three different parts of the tumor. 

This model could provide useful information 

for understanding the phenomena fundamental 

to angiogenesis and solid tumor growth in 

future clinical research. Model predictions 

were in qualitative agreement with 

experimental observations and might have 

implications as a supplementary model to 

facilitate mathematical analyses for anti-cancer 

therapies. As mentioned throughout the study, 

in our proposed coupled model and 

simulations, all parameter values were 

selected, based on previous published papers. 

Also, we cited authentic papers for validation 

of the results. However, it should be noted that 

experimental validation using in vivo or in 

vitro angiogenesis assays is expensive and 

time-consuming and requires specialized 

training. Although in vitro assays tend to be 

more rapid, in vitro angiogenesis assays 

operate on the principle that endothelial cells 

form tubule-like structures when cultured on a 

supportive matrix. In fact, assays, involving a 

matrix, derived from murine tumors and 

Matrigel, are now the most common in vitro 

tubule formation assays. We aim to conduct 

further in vivo or in vitro angiogenesis assays 

in the future. 
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