Field-In-Field Plan Versus Tangential Wedged Beam Plan in Chest Wall Radiotherapy of Post-Mastectomy Patients: Treatment Planning Study

Document Type : Original Paper

Authors

1 Medical Physics Dept., Kurdistan University of Medical Sciences, Sanandaj, Iran.

2 Department of Medical Physics, School of medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.

3 Department of Medical Physics, Faculty of Medicine, Kermanshah, Iran.

4 Tohid Hospital, Department of Radiotherapy, Kurdistan University of Medical Sciences, Sanandaj, Iran.

Abstract

Introduction: In this study, dose distribution of the chest wall in post-mastectomy breast cancer patients was evaluated and compared in the tangential wedged beam (TWB) and field-in-field (FIF) plans.
Materials and Methods: Thirty-six patients with left-sided breast cancer were enrolled in this study. The FIF and TWB plans were generated for each patient to compare dosimetric parameters of the chest wall. The maximum dose (Dmax), homogeneity index (HI), conformity index (CI), and uniformity index (UI) were defined and used for comparison of the dosimetric parameters of the planning target volume (PTV) in both FIF and TWB plans. The percentage of volumes receiving at least 10, 20, 30, and 40 Gy of the left lung and 5, 10, 20, 25 and 30 Gy of the heart were used to compare the dosimetric results of the organs at risk. Statistical analysis was performed using SPSS, version 20.
Results: The FIF plan had significantly lower HI (P=0.000) than the TWB plan, indicating that the FIF plan was better than the TWB plan in PTV. The V40lung (15.36±4.35 vs. 18.37±4.42) and V30heart (8.15±3.75 vs. 10.94±3.94; P=0.000) were significantly lower in the FIF plan than in the TWB plan. In addition, the monitor unit (MU) was significantly lower in the FIF plan than in the TWB plan (227.76 vs. 323.59; P=0.000).
Conclusion: The FIF plan significantly reduced the dose volume of the left lung and heart in post-mastectomy radiotherapy compared to the TWB plan. Therefore, the FIF plan is recommended for this purpose.

Keywords

Main Subjects


  1. 1.       Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin.  2016; 66(1): 7-30.

    1. Alzoubi A, Kandaiya S, Shukri A, Elsherbieny E. Contralateral breast dose from chest wall and breast irradiation: local experience. Australas Phys Eng Sci Med. 2010 Jun; 33(2): 137-44. DOI: 10.1007/s13246-010-0011-y.
    2. Habermann EB, Abbott A, Parsons HM, Virnig BA, Al-Refaie WB, Tuttle TM. Are mastectomy rates really increasing in the United States?. J Clin Oncol. 2010 Jul 20; 28(21):3437-41. DOI: 10.1200/JCO.2009.27.6774.
    3. El Saghir NS, Khalil MK, Eid T, El Kinge AR, Charafeddine M, Geara F, et al. Trends in epidemiology and management of breast cancer in developing Arab countries: a literature and registry analysis. Int J Surg. 2007 Aug; 5(4):225-33. DOI: 10.1016/j.ijsu.2006.06.015.
    4. Bartelink H, Horiot J-C, Poortmans P, Struikmans H, Van den Bogaert W, Barillot I, et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med. 2001 Nov 8; 345(19):1378-87. DOI: 10.1056/NEJMoa010874.
    5. Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002 Oct 17; 347(16):1233-41. DOI: 10.1056/NEJMoa022152.
    6. Haviland JS, Owen JR, Dewar JA, Agrawal RK, Barrett J, Barrett-Lee PJ, et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013 Oct; 14(11):1086-94. DOI: 10.1016/S1470-2045(13)70386-3.
    7. Miller A, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981 Jan 1; 47(1):207-14.
    8. Jeraj M, Robar V. Multileaf collimator in radiotherapy. Radiol Oncol. 2004;38(3):235-40.
    9. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013 Mar 14; 368(11):987-98. DOI: 10.1056/NEJMoa1209825.
    10. Henson K, McGale P, Taylor C, Darby S. Radiation-related mortality from heart disease and lung cancer more than 20 years after radiotherapy for breast cancer. Br J Cancer. 2013 Jan 15; 108(1):179-82. DOI: 10.1038/bjc.2012.575.
    11. McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson N-O, Bennet AM, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011 Aug; 100(2):167-75. DOI: 10.1016/j.radonc.2011.06.016.
    12. Jabbari K, Azarmahd N, Babazade S, Amouheidari A. Optimizing of the tangential technique and supraclavicular fields in 3 dimensional conformal radiation therapy for breast cancer. J Med Signals Sens. 2013 Apr; 3(2):107-16.
    13. Stillie AL, Kron T, Herschtal A, Hornby C, Cramb J, Sullivan K, et al. Does inverse‐planned intensity‐modulated radiation therapy have a role in the treatment of patients with left‐sided breast cancer? J Med Imaging Radiat Oncol. 2011 Jun; 55(3):311-9. DOI: 10.1111/j.1754-9485.2011.02273.x.
    14. Johansen S, Cozzi L, Olsen DR. A planning comparison of dose patterns in organs at risk and predicted risk for radiation induced malignancy in the contralateral breast following radiation therapy of primary breast using conventional, IMRT and volumetric modulated arc treatment techniques. Acta Oncol. 2009; 48(4):495-503. DOI: 10.1080/02841860802657227.
    15. Vatanen T, Traneus E, Lahtinen T. Comparison of conventional inserts and an add-on electron MLC for chest wall irradiation of left-sided breast cancer. Acta Oncol. 2009; 48(3):446-51. DOI: 10.1080/02841860802477907.
    16. Cozzi L, Fogliata A, Nicolini G, Bernier J. Clinical experience in breast irradiation with intensity modulated photon beams. Acta Oncol. 2005;44(5):467-74. DOI: 10.1080/02841860510029879.
    17. Lim T, Petersen V, Zissiadis Y. CT planning for breast cancer. Australas Radiol. 2007 Jun; 51(3):289-95. DOI: 10.1111/j.1440-1673.2007.01732.x.
    18. Fong A, Bromley R, Beat M, Vien D, Dineley J, Morgan G. Dosimetric comparison of intensity modulated radiotherapy techniques and standard wedged tangents for whole breast radiotherapy. J Med Imaging Radiat Oncol. 2009 Feb; 53(1):92-9. DOI: 10.1111/j.1754-9485.2009.02043.x.
    19. Morganti AG, Cilla S, Gaetano A, Panunzi S, Digesù C, Macchia G, et al. Forward planned intensity modulated radiotherapy (IMRT) for whole breast postoperative radiotherapy. Is it useful? When?. J Appl Clin Med Phys. 2011 Jan 31; 12(2):3451. DOI: 10.4103/0971-6203.116367.
    20. Breast Cancer Atlas for Radiation Therapy Planning: Consensus Definitions. Radiation Therapy Oncology Group (RTOG) Breast Cancer Contouring Atlas.
    21. Rudat V, Alaradi AA, Mohamed A, Khaled A-Y, Altuwaijri S. Tangential beam IMRT versus tangential beam 3D-CRT of the chest wall in postmastectomy breast cancer patients: a dosimetric comparison. Radiat Oncol. 2011 Mar 21; 6:26. DOI: 10.1186/1748-717X-6-26.
    22. Kim S, Choi Y. Dosimetric advantages of the field-in-field plan compared with the tangential wedged beams plan for whole-breast irradiation. Prog Med Phys. 2014 Dec; 25(4):199-204. DOI: 10.14316/pmp.2014.25.4.199.
    23. Feuvret L, Noël G, Mazeron J-J, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006 Feb 1; 64(2):333-42. DOI: 10.1016/j.ijrobp.2005.09.028.
    24. Onal C, Sonmez A, Arslan G, Oymak E, Kotek A, Efe E, et al. Dosimetric comparison of the field-in-field technique and tangential wedged beams for breast irradiation. Jpn J Radiol. 2012 Apr; 30(3):218-26. DOI: 10.1007/s11604-011-0034-7.
    25. Lee J-W, Hong S, Choi K-S, Kim Y-L, Park B-M, Chung J-B, et al. Performance evaluation of field-in-field technique for tangential breast irradiation. Jpn J Clin Oncol. 2008 Feb; 38(2):158-63. DOI: 10.1093/jjco/hym167.
    26. Jin G-H, Chen L-X, Deng X-W, Liu X-W, Huang Y, Huang X-B. A comparative dosimetric study for treating left-sided breast cancer for small breast size using five different radiotherapy techniques: conventional tangential field, filed-in-filed, tangential-IMRT, multi-beam IMRT and VMAT. Radiat Oncol. 2013 Apr 15; 8:89. DOI: 10.1186/1748-717X-8-89.
    27. Sasaoka M, Futami T. Dosimetric evaluation of whole breast radiotherapy using field-in-field technique in early-stage breast cancer. Int J Clin Oncol. 2011 Jun; 16(3):250-6. DOI: 10.1007/s10147-010-0175-1.
    28. Ma C, Zhang W, Lu J, Wu L, Wu F, Huang B, et al. Dosimetric comparison and evaluation of three radiotherapy techniques for use after modified radical mastectomy for locally advanced left-sided breast cancer. Sci Rep. 2015 Jul 21; 5:12274. DOI: 10.1038/srep12274.
    29. Gursel B, Meydan D, Ozbek N, Ofluoglu T. Dosimetric comparison of three different external beam whole breast irradiation techniques. Adv Ther. 2011 Dec; 28(12):1114-25. DOI: 10.1007/s12325-011-0078-1.
    30. Ercan T, İğdem Ş, Alço G, Zengin F, Atilla S, Dinçer M, et al. Dosimetric comparison of field in field intensity-modulated radiotherapy technique with conformal radiotherapy techniques in breast cancer. Jpn J Radiol. 2010 May; 28(4):283-9. DOI: 10.1007/s11604-010-0423-3.
    31. Sun L-M, Meng F-Y, Yang T-H, Tsao M-J. Field-in-field plan does not improve the dosimetric outcome compared with the wedged beams plan for breast cancer radiotherapy. Med Dosim. 2014 spring; 39(1):79-82. DOI: 10.1016/j.meddos.2013.10.002.
    32. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, et al. Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999 Sep 1; 45(2):323-9. DOI: 10.1016/S0360-3016(99)00183-2.
    33. Kwa SL, Lebesque JV, Theuws JC, Marks LB, Munley MT, Bentel G, et al. Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys. 1998 Aug 1; 42(1):1-9. DOI: 10.1016/S0360-3016(98)00196-5.
    34. Gaya A, Ashford R. Cardiac complications of radiation therapy. Clin Oncol (R Coll Radiol). 2005 May; 17(3):153-9. 36.
    35. Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE. Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol. 2003 Jan;45(1):55-75.
    36. Patt DA, Goodwin JS, Kuo Y-F, Freeman JL, Zhang DD, Buchholz TA, et al. Cardiac morbidity of adjuvant radiotherapy for breast cancer. J Clin Oncol. 2005 Oct 20; 23(30):7475-82. DOI: 10.1200/JCO.2005.13.755.
    37. Højris I, Overgaard M, Christensen JJ, Overgaard J. Morbidity and mortality of ischaemic heart disease in high-risk breast-cancer patients after adjuvant postmastectomy systemic treatment with or without radiotherapy: analysis of DBCG 82b and 82c randomised trials. Lancet. 1999 Oct 23;354(9188):1425-30. DOI: 10.1016/S0140-6736(99)02245-X.