The Effect of Breast Phantom Material on the Dose Distribution in AccuBoost Brachytherapy

Document Type : Original Paper


1 Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran

2 Radiation Research Center, Shiraz University, Shiraz, Iran

3 Nuclear Engineering, Shiraz University, Shiraz, Iran.


Introduction: Long-term teletherapy program is not suitable for old and working patients and those living in areas where little access to primary health care is available. Accelerated partial breast irradiation (APBI) using high dose rate (HDR) brachytherapy is an appropriate alternative for these patients due to its limited number of fractions. The AccuBoost is a system for delivering APBI. The brachytherapy dose is delivered from parallel-opposed beams from 192Ir sources in circle applicators. This study was conducted to investigate the effects of breast phantom material on the dose distribution in AccuBoost brachytherapy using Monte Carlo N-Particle method.
Material and Methods: In this study,different inhomogeneous breast phantoms composed of various materials were simulated. Dosimetric evaluations including a comparison of dose distribution between different breast phantom materials and water phantom was performed.
Results: There was no significant difference between the breast and water phantoms in terms of mean dose values in different positions of each phantom. The most significant differences between the doses of different compositions and water were found to be about 6% near the skin.
Conclusion: No significant differences were observed between the breast phantoms composed of diverse materials and water phantoms considering the dose distributions.  Therefore, it is not necessary to replace the current treatment planning systems using Task Group No. 43 formalism with combined model-based and patient-specific dosimetry methods.


Main Subjects

  1. References


    1. Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. New England Journal of Medicine. 2002;347(16):1227-32. DOI: 10.1056/NEJMoa020989.
    2. Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. New England Journal of Medicine. 2002;347(16):1233-41. DOI: 10.1056/NEJMoa022152.
    3. Njeh CF, Saunders MW, Langton CM. Accelerated partial breast irradiation (APBI): a review of available techniques. Radiation Oncology. 2010;5(1):90. DOI: 10.1186/1748-717X-5-90.
    4. Zehtabian M, Sina S, Rivard MJ, Meigooni AS. Evaluation of BEBIG HDR 60Co system for non-invasive image-guided breast brachytherapy. Journal of contemporary brachytherapy. 2015;7(6):469. DOI: 10.5114/jcb.2015.56766.
    5. Rivard MJ, Melhus CS, Wazer DE, Bricault RJ. Dosimetric characterization of round HDR 192Ir AccuBoost applicators for breast brachytherapy. Medical physics. 2009;36(11):5027-32. DOI: 10.1118/1.3232001.
    6. Sina S, Faghihi R, Soleymani Meigooni A. A Comparison of the Dosimetric Parameters of Cs-137 Brachytherapy Source in Different Tissues with Water Using Monte Carlo Simulation. Iranian Journal of Medical Physics. 2012;9(1):65-74. DOI: 10.22038/IJMP.2012.331.
    7. Markman J, Williamson JF, Dempsey JF, Low DA. On the validity of the superposition principle in dose calculations for intracavitary implants with shielded vaginal colpostats. Medical Physics. 2001; 28(2):147-55. DOI: 10.1118/1.1339224.
    8. Sina S, Faghihi R, Meigooni AS, Mehdizadeh S, Mosleh Shirazi MA, Zehtabian M. Impact of the vaginal applicator and dummy pellets on the dosimetry parameters of Cs-137 brachytherapy source. Journal of Applied Clinical Medical Physics. 2011;12(3):183-93. DOI:10.1120/jacmp.v12i3.3480.
    9. 9. Rivard MJ, Venselaar JL, Beaulieu L. The evolution of brachytherapy treatment planning. Medical Physics. 2009;36:2136-53. DOI: 10.1016j.radonc.2005.08.007.
    10. Sina S, Faghihi R, Meigooni AS, Mahdizadeh S, Zehtabian M, Mosleh-Shirazi MA. Simulation of the shielding effects of an applicator on the AAPM TG-43 parameters of Cs-137 Selectron LDR brachytherapy sources. Iran J Radiat Res. 2009; 7(3):135-40.
    11. Pérez-Calatayud J, Granero D, Ballester F. Phantom size in brachytherapy source dosimetric studies. Medical Physics. 2004; 31(7):2075-81. DOI: 10.1118/1.1759826.
    12. Pérez-Calatayud J, Granero D, Ballester F, Lliso F. A Monte Carlo study of intersource effects in dometype applicators loaded with LDR Cs-137 sources. Radiotherapy and Oncology. 2005;77(2):216-9. DOI:10.1016/j.radonc.2005.08.007.
    13. Pérez-Calatayud J, Granero D, Ballester F, Puchades V, Casal E. Monte Carlo dosimetric characterization of the Cs-137 selectron/LDR source: evaluation of applicator attenuation and superposition approximation effects. Medical Physics. 2004;31(3):493-9. DOI:10.1118/1.1644640.
    14. Sina S, Lotfalizadeh F, Karimpourfard M, Zaker N, Amanat B, Zehtabian M, et al. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources. Iranian Journal of Medical Physics. 2015;12(2):109-20. DOI: 1022038/IJMP.2015.4774.
    15. Meli JA, Meigooni AS, Nath R. On the choice of phantom material for the dosimetry of 192Ir sources. International Journal of Radiation Oncology* Biology* Physics. 1988;14(3):587-94.
    16. Williamson JF. Comparison of measured and calculated dose rates in water near I-125 and Ir-192 seeds. Medical physics. 1991;18(4):776-86. DOI:10.11181.596631.
    17. Melhus CS, Rivard MJ. Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for 137Cs, 125I, 192Ir, 103Pd, and 169Yb sources. Medical physics. 2006;33:1729-37. DOI:10.1118/1.2199987.
    18. Tedgren ÅC, Carlsson GA. Influence of phantom material and dimensions on experimental 192Ir dosimetry. Medical physics. 2009;362228-35. DOI: 10.1118/1.3121508.
    19. Ghorbani M, Salahshour F, Haghparast A, Moghaddas TA, Knaup C. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources. Journal of Contemporary Brachytherapy. 2014;6(1):54. DOI: 105114/JCB.2014.42024.
    20. Pantelis E, Papagiannis P, Karaiskos P, Angelopoulos A, Anagnostopoulos G, Baltas D, et al. The effect of finite patient dimensions and tissue inhomogeneities on dosimetry planning of 192Ir HDR breast brachytherapy: a Monte Carlo dose verification study. International Journal of Radiation Oncology• Biology• Physics. 2005;61(5):1596-602. DOI: 10.1016/j.ijrobp.2004.12.065.
    21. Cazeca MJ, Medich DC, Munro JJ. Effects of breast‐air and breast‐lung interfaces on the dose rate at the planning target volume of a MammoSite® catheter for Yb‐169 and Ir‐192 HDR sources. Medical physics. 2010;37(8):4038-45. DOI: 10.1118/1.3458720.
    22. Papie M, Faghihi R, Sina S. the Effect of Phantom Material On Accuboost Hdr Brachytherapy: su-i-gpd-t-33. Medical Physics. 2017;44(6):2834.
    23. Papie M, Faghihi R, Sarshogh S, Sina S. the Effect of Breast Phantom Composition On Dose Distribution in Accelerated Partial Breast Irradiation Using Strut-adjusted Volume Implant (savi) Brachytherapy: su-i-gpd-t-30. Medical Physics. 2017;44(6):2833.
    24. Hepel JT. Noninvasive Image-Guided Breast Brachytherapy (NIBB). InShort Course Breast Radiotherapy. 2016 ; 387-402. DOI:10.1007/978-3-319-24388-7_25.
    25. Yaffe MJ, Boone JM, Packard N, Alonzo‐Proulx O, Huang SY, Peressotti CL, et al. The myth of the 50‐50 breast. Medical physics. 2009;36(12):5437-43. DOI: 10.1118/1.3250863.
    26. Landry G, Reniers B, Murrer L, Lutgens L, Gurp BV, Pignol JP, et al. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition. Medical physics. 2010;37(10):5188-98. DOI: 10.1118/1.3477161.
    27. Woodard HQ, White DR. The composition of body tissues. The British journal of radiology. 1986;59(708):1209-18. DOI: 10.1259/0007-1285-59-708-1209.
    28. Beaulieu L, Carlsson Tedgren Å, Carrier JF, Davis SD, Mourtada F, Rivard MJ, et al. Report of the Task Group 186 on model‐based dose calculation methods in brachytherapy beyond the TG‐43 formalism: Current status and recommendations for clinical implementation. Medical physics. 2012;39(10):6208-36. DOI: 10.1118/1.4747264.
    29. White DR, Booz J, Griffith RV, Spokas JJ, Wilson IJ. ICRU Reports. Journal of the ICRU. 1989 ; 15(1):184-6. DOI: 10.1093/jicru/os23.1.184.
    30. Wu CH, Liao YJ, Liu YW, Hung SK, Lee MS, Hsu SM. Dose distributions of an 192Ir brachytherapy source in different media. BioMed research international. 2014;2014. DOI: 10.1155/2014/946213.
    31. Chandola RM, Tiwari S, Kowar MK, Choudhary V. Effect of inhomogeneities and source position on dose distribution of Nucletron high dose rate Ir-192 brachytherapy source by Monte Carlo simulation. J Cancer Res Ther. 2010; 6: 54-7. DOI: 10.4103/0973-1482.63567
    32. Hsu SM, Wu CH, Lee JH, Hsieh YJ, Yu CY, Liao YJ, et al. A study on the dose distributions in various materials from an Ir-192 HDR brachytherapy source. PLoS One. 2012  ;7(9):e44528. DOI: 10.1371/journal.pone.0044528.
    33. White SA, Landry G, van Gils F, Verhaegen F, Reniers B. Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry. Phys Med Biol. 2012; 57: 3585-96. DOI: 10.1088/0031-9155/57/11/3585.
    34. O'Daniel JC, Garden AS, Schwartz DL, Wang H, Ang KK, Ahamad A, et al. Parotid gland dose in intensity-modulated radiotherapy for head and neck cancer: is what you plan what you get?. International Journal of Radiation Oncology* Biology* Physics. 2007;69(4):1290-6.