A comparison of treatment duration for Cobalt-60 and Iridium-192 sources with different activities in HDR brachytherapy using tandem-ovoid applicator

Document Type : Original Paper

Authors

1 School of Mechanical Engineering, Shiraz University, Shiraz, Iran

2 Radiation Research Center, Shiraz University, Shiraz, Iran

3 Comprehensive cancer center of Nevada, Las Vegas, USA

Abstract

Introduction: The long-half-life Cobalt-60 source with high dose rate (HDR) brachytherapy is an appropriate alternative to Iridium-192 (HDR) source in the treatment of GYN patients in developing countries. This study aimed to compare HDR cervical cancer treatment duration using Cobalt-60 and Iridium-192 sources for the Tandem-ovoid applicators.
Material and Methods: In the present study, BEBIG Cobalt-60 source model Co0.A86 and Iridium-192 source model mHDR-v2r were utilized. The treatment time required for both radionuclides was calculated using the TG-43 formalism. To calculate the treatment time for the Iridium source, the absorbed dose was used in the TG-43 formalism and treatment data. Then the dwell times were determined after repeating the calculations with Cobalt-60. Finally, the comparison was made for the treatment duration for the two sources.
Results: According to our findings, the treatment time for the cobalt source with the activity of 2.131 Ci is somehow the same as that of the iridium source with the activity of 5.690 Ci. If the maximum treatment duration is supposed to be 16 minutes in a treatment session, the effective time window for Iridium-192 is about 160 days. This is, however, the effective time window is 2000 days for Cobalt-60.
Conclusion: According to the findings, the use of Cobalt-60 instead of Iridium-192 is economically beneficial for equipment selection in newly constructed departments. Changes in the activities of Cobalt-60 in comparison with Iridium-192 requires editing the total treatment time of the treatment planning system for patients. Such editing may raise errors and reduce accuracy.

Keywords

Main Subjects


  1. Nag S, Chao C, Erickson B, Fowler J, Gupta N, Martinez A, et al. The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2000;52(1):33–
  2. Hoskin PJ, Bownes P. Innovative technologies in radiation therapy: brachytherapy. Semin Radiat Oncol. 2006;16(4):209–
  3. Decker WE, Erickson B, Albano K, Gillin M. Comparison of traditional low-dose-rate to optimized and non-optimized high-dose-rate tandem and ovoid dosimetry. Int J Radiat Oncol Biol Phys. 2001;50(2):561–
  4. Mourtada F, Gifford KA, Berner PA, Horton JL, Price MJ, Lawyer AA, et al. Retrospective dosimetric comparison of low-dose-rate and pulsed-dose-rate intracavitary brachytherapy using a tandem and mini-ovoids. Med Dosim. 2007;32(3):181–
  5. Concannon PJ, Mermis N, Nguyen L, Palmer MB. Comparison of three brachytherapy gynecological intercavitary treatment planning systems. Med Dosim. 2004;29(2):115–
  6. Elhanafy OA, Migahed MD, Sakr HA, Ellithy M, Das RK, Odau HJ, et al. Comparison of two planning systems for HDR brachytherapy gynecological application. J Appl Clin Med Phys. 2001;2(3):114–
  7. Kirisits C, Siebert F-A, Baltas D, De Brabandere M, Hellebust TP, Berger D, et al. Accuracy of volume and DVH parameters determined with different brachytherapy treatment planning systems. Radiother Oncol. 2007;84(3):290–
  8. Patone H, Souhami L, Parker W, Evans M, Duclos M, Portelance L. A dosimetric comparison of two high-dose-rate brachytherapy planning systems in cervix cancer: Standardized template planning vs. computerized treatment planning. Brachytherapy. 2008;7(3):254–
  9. Park DW, Kim YS, Park SH, Choi EK, Do Ahn S, Lee SW, et al. A comparison of dose distributions of HDR intracavitary brachytherapy using different sources and treatment planning systems. Applied Radiation and Isotopes. 2009;67(7-8):1426-31.
  10. Zwierzchowski G, Malicki J, Skowronek J. Dosimetric verification of dose optimisation algorithm during endovascular brachytherapy of the peripheral vessels. Reports Pract Oncol Radiother. 2009;14(4):114–
  11. Sina S, Faghihi R, Meigooni AS, Mehdizadeh S, Shirazi MAM, Zehtabian M. Impact of the vaginal applicator and dummy pellets on the dosimetry parameters of Cs-137 brachytherapy source. J Appl Clin Med Phys [Internet]. 2011;12(3):183– Available from: http://dx.doi.org/10.1120/jacmp.v12i3.3480.
  12. Zehtabian M, Faghihi R, Sina S. A Review on Main Defects of TG-43. INTECH Open Access Publisher; 2012.
  13. Pérez-Calatayud J, Granero D, Ballester F. Phantom size in brachytherapy source dosimetric studies. Med Phys. 2004;31(7):2075–
  14. Williamson JF. Comparison of measured and calculated dose rates in water near I-125 and Ir-192 seeds. Med Phys. 1991;18(4):776–
  15. Strohmaier S, Zwierzchowski G. Comparison of 60Co and 192Ir sources in HDR brachytherapy. J Contemp Brachytherapy. 2011;3(4):199–
  16. Ntekim A, Adenipekun A, Akinlade B, Campbell O. High Dose Rate Brachytherapy in the Treatment of Cervical Cancer: Preliminary Experience with Cobalt 60 Radionuclide Source--A Prospective Study. Clin Med Insights Oncol. 2010;(4).
  17. Granero D, Vijande J, Ballester F, Rivard MJ. Dosimetry revisited for the HDR I192r brachytherapy source model mHDR‐ Med Phys. 2011;38(1):487–94.
  18. Ballester F, Granero D, Pérez-Calatayud J, Casal E, Agramunt S, Cases R. Monte Carlo dosimetric study of the BEBIG Co-60 HDR source. Phys Med Biol. 2005;50(21):N309–
  19. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31(3):633–
  20. Granero D, Pérez-Calatayud J, Ballester F, Perez-Calatayud J, Ballester F. Technical note: Dosimetric study of a new Co-60 source used in brachytherapy. Med Phys [Internet]. 2007;34(9):3485– Available from: http://scitation.aip.org/content/aapm/journal/medphys/34/9/10.1118/1.2759602.
  21. López JFA, Donaire JT, Alcalde RG. Monte Carlo dosimetry of the most commonly used 192 Ir high dose rate brachytherapy sources. Rev Fis Med. 2011;12(3):159–
  22. Cobalt-60 in HDR Brachytherapy [Internet]. [cited 2017 Apr 13]. Available from: http://www.bebig.com/home/products/hdr_brachytherapy/cobalt_60.
  23. Palmer A, Hayman O, Muscat S. Treatment planning study of the 3D dosimetric differences between Co-60 and Ir-192 sources in high dose rate (HDR) brachytherapy for cervix cancer. J Contemp Brachytherapy. 2012;4(1):52.
  24. Sadeghi MH, Sina S, Mehdizadeh A, Faghihi R, Moharramzadeh V, Meigooni AS. The effect of tandem-ovoid titanium applicator on points A, B, bladder, and rectum doses in gynecological brachytherapy using 192 Ir. J Contemp Brachytherapy. 2018;10(1):91–
  25. Kertzscher G, Andersen CE, Siebert F-A, Nielsen SK, Lindegaard JC, Tanderup K. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al 2 O 3: C dosimetry and a novel statistical error decision criterion. Radiother Oncol. 2011;100(3):456–
  26. Williamson JF. Brachytherapy technology and physics practice since 1950: a half-century of progress. Phys Med Biol. 2006;51(13):R303.
  27. Salminen EK, Kiel K, Ibbott GS et al. International conference on advances in radiation oncology (ICARO): Outcomes of an IAEA meeting. Radiat Oncol. 2011;6: 1-9.