Deep Learning-Based Brain Tumor Segmentation in MRI Images: A MobileNetV2-DeepLabV3+ Approach

Document Type : Original Paper

Authors

1 Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

2 Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

10.22038/ijmp.2023.73972.2313

Abstract

Introduction: Brain tumors (BTs) pose significant challenges in medical diagnosis and treatment due to their heterogeneity and complex characteristics. Accurate and precise segmentation of BTs in magnetic resonance images (MRIs) is crucial for effective treatment planning and patient care. In this study, we propose an ensemble deep-learning (DL) model to address the challenging task of BT segmentation. We aim to achieve accurate localization and delineation of tumor regions across different axial views.
Material and Methods: The dataset used in this study consists of 3064 T1-weighted contrast-enhanced MRI images obtained from patients diagnosed with glioma, meningioma, and pituitary tumors. Image preprocessing techniques, including normalization and intensity transformation, were applied to enhance the contrast and standardize the intensity values. The DL model is based on the DeepLabV3+ architecture combined with three well-known deep convolutional neural networks as encoders: MobileNetV2, ResNet50, and XceptionNet.
Results: The proposed ensemble model, with MobileNetV2 as the encoder, demonstrated superior performance in BT segmentation. The model achieved an average dice similarity coefficient of 0.938 and a global accuracy of 0.997. Compared to alternative models, MobileNetV2-DeepLabV3+ showed significant accuracy and segmentation precision improvements.
Conclusion: The ensemble DL model, leveraging the strengths of MobileNetV2 and DeepLabV3+, offers a robust and efficient solution for accurate BT segmentation in MRI images. The model’s ability to delineate tumor regions holds great promise for enhancing diagnosis and treatment planning in BT analysis. Future work will explore further fine-tuning techniques and evaluate the model’s performance on larger datasets to assess its generalization capabilities.

Keywords

Main Subjects


  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016 Jun 9;131(6):803–
  2. Arora RS, Alston RD, Eden TOB, Estlin EJ, Moran A, Birch JM. Age–incidence patterns of primary CNS tumors in children, adolescents, and adults in England. Neuro Oncol. 2009 Aug 1;11(4):403– doi: 10.1215/15228517-2008-097
  3. Işın A, Direkoğlu C, Şah M. Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods. Procedia Comput Sci. 2016;102:317– doi: 10.1016/j.procs.2016.09.407
  4. Modaresnia Y, Abedinzadeh Torghabeh F, Hosseini SA. EfficientNetB0’s Hybrid Approach for Brain Tumor Classification from MRI Images Using Deep Learning and Bagging Trees. In: 2023 13th International Conference on Computer and Knowledge Engineering, ICCKE 2023. IEEE; 2023. p. 234– doi:10.1109/ICCKE60553.2023.10326290
  5. Zhang W, Wu Y, Yang B, Hu S, Wu L, Dhelim S. Overview of Multi-Modal Brain Tumor MR Image Segmentation. Healthcare. 2021 Aug 16;9(8):1051. doi: 10.3390/healthcare9081051
  6. Fawzi A, Achuthan A, Belaton B. Brain Image Segmentation in Recent Years: A Narrative Review. Brain Sci. 2021 Aug 10;11(8):1055. doi: 10.3390/brainsci11081055
  7. Liu Z, Tong L, Chen L, Jiang Z, Zhou F, Zhang Q, et al. Deep learning based brain tumor segmentation: a survey. Complex & Intelligent Systems. 2023 Feb 9;9(1):1001–
  8. Kumar A. Study and analysis of different segmentation methods for brain tumor MRI application. Multimed Tools Appl. 2023 Feb 16;82(5):7117–
  9. Angulakshmi M, Lakshmi Priya GG. Automated brain tumour segmentation techniques- A review. Int J Imaging Syst Technol. 2017 Mar;27(1):66–
  10. Aboussaleh I, Riffi J, Mahraz AM, Tairi H. Brain Tumor Segmentation Based on Deep Learning’s Feature Representation. J Imaging. 2021 Dec 8;7(12):269.
  11. Ullah F, Salam A, Abrar M, Amin F. Brain Tumor Segmentation Using a Patch-Based Convolutional Neural Network: A Big Data Analysis Approach. Mathematics. 2023 Mar 28;11(7):1635.
  12. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018 Apr 1;40(4):834–
  13. Lin G, Milan A, Shen C, Reid I. RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2017. p. 5168–
  14. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2015. p. 3431–
  15. naceur M Ben, Saouli R, Akil M, Kachouri R. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images. Comput Methods Programs Biomed. 2018 Nov;166:39–
  16. Sailunaz K, Bestepe D, Alhajj S, Özyer T, Rokne J, Alhajj R. Brain tumor detection and segmentation: Interactive framework with a visual interface and feedback facility for dynamically improved accuracy and trust. Raja G, editor. PLoS One. 2023 Apr 17;18(4):e0284418.
  17. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with Deep Neural Networks. Med Image Anal. 2017 Jan;35:18–
  18. Rehman A, Naz S, Naseem U, Razzak I, Hameed IA. Deep AutoEncoder-Decoder Framework for Semantic Segmentation of Brain Tumor. Aust J Intell Inf Process Syst. 2019;15:53–
  19. Mary Cynthia S, Merlin Livingston LM. Brain Tumour Segmentation Methods Based on DWT. In 2022. p. 489–
  20. Ranjbarzadeh R, Bagherian Kasgari A, Jafarzadeh Ghoushchi S, Anari S, Naseri M, Bendechache M. Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci Rep. 2021 May 25;11(1):10930.
  21. Aggarwal M, Tiwari AK, Sarathi MP, Bijalwan A. An early detection and segmentation of Brain Tumor using Deep Neural Network. BMC Med Inform Decis Mak. 2023 Apr 26;23(1):78.
  22. Aboussaleh I, Riffi J, Mahraz AM, Tairi H. Brain Tumor Segmentation Based on Deep Learning’s Feature Representation. J Imaging. 2021 Dec 8;7(12):269.
  23. Tripathi S, Verma A, Sharma N. Automatic segmentation of brain tumour in MR images using an enhanced deep learning approach. Comput Methods Biomech Biomed Eng Imaging Vis. 2021 Mar 4;9(2):121–
  24. Gunasekara SR, Kaldera HNTK, Dissanayake MB. A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring. Yao Y h., editor. J Healthc Eng. 2021 Feb 28;2021:1–
  25. Haq EU, Jianjun H, Huarong X, Li K, Weng L. A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI. Koundal D, editor. Comput Math Methods Med. 2022 Aug 8;2022:1–
  26. Eker AG, Pehlivanoğlu MK, İnce İ, Duru N. Deep Learning and Transfer Learning Based Brain Tumor Segmentation. In: 2023 8th International Conference on Computer Science and Engineering (UBMK). IEEE; 2023. p. 163–
  27. Sobhaninia Z, Rezaei S, Noroozi A, Ahmadi M, Zarrabi H, Karimi N, et al. Brain Tumor Segmentation Using Deep Learning by Type Specific Sorting of Images. 2018.
  28. Badža MM, Barjaktarović MČ. Segmentation of Brain Tumors from MRI Images Using Convolutional Autoencoder. Applied Sciences. 2021 May 10;11(9):4317.
  29. Cheng J, Huang W, Cao S, Yang R, Yang W, Yun Z, et al. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition. Zhang D, editor. PLoS One. 2015 Oct 8;10(10):e0140381.
  30. Cheng J, Yang W, Huang M, Huang W, Jiang J, Zhou Y, et al. Retrieval of Brain Tumors by Adaptive Spatial Pooling and Fisher Vector Representation. Yap PT, editor. PLoS One. 2016 Jun 6;11(6):e0157112.
  31. Abedinzadeh Torghabeh F, Hosseini SA, Ahmadi Moghadam E. Enhancing Parkinson's disease severity assessment through voice-based wavelet scattering, optimized model selection, and weighted majority voting. Med. Nov. Technol. Devices. 2023 Dec 1;20:100266. doi: 10.1016/j.medntd.2023.100266
  32. Abedinzadeh Torghabeh F, Ahmadi Moghadam E, Hosseini SA. Simultaneous time-frequency analysis of gait signals of both legs in classifying neurodegenerative diseases. Gait Posture. 2024 Sep;113:443– doi: 10.1016/j.gaitpost.2024.07.302
  33. Rezaei S, Zadeh HG, Gholizadeh MH, Fayazi A, Rezaee K. Modeling and Predicting the Survival of Breast Cancer Patients via Deep Neural Networks and Bayesian Algorithm. Iranian Journal of Medical Physics. 2024;21(3):203– doi: 10.22038/ijmp.2023.69096.2217
  34. Abedinzadeh Torghabeh F, Modaresnia Y, Hosseini SA. An Efficient Approach for Breast Abnormality Detection through High-Level Features of Thermography Images. In: 2023 13th International Conference on Computer and Knowledge Engineering, ICCKE 2023. IEEE; 2023. p. 54– doi: 10.1109/ICCKE60553.2023.10326246
  35. Mirzaei F, Parishan M, Faridafshin M, Faghihi R, Sina S. Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images. Iranian Journal of Medical Physics. 2018;15(Special Issue-12th. Iranian Congress of Medical Physics):184. doi: 10.22038/ijmp.2018.12797
  36. Firouzmand M, Majidzadeh K, Jafari M, Haghighat S, Esmaeili R, Moradi L, et al. A Framework for Promoting Passive Breast Cancer Monitoring: Deep Learning as an Interpretation Tool for Breast Thermograms. Iranian Journal of Medical Physics. 2024;21(4):237– doi: 10.22038/ijmp.2023.71683.2268
  37. Modaresnia Y, Abedinzadeh Torghabeh F, Hosseini SA. Enhancing multi-class diabetic retinopathy detection using tuned hyper-parameters and modified deep transfer learning. Multimed Tools Appl. 2024 Mar 8:1-22. doi: 10.1007/s11042-024-18506-3
  38. Ahmadi Moghadam E, Abedinzadeh Torghabeh F, Hosseini SA, Moattar MH. Improved ADHD Diagnosis Using EEG Connectivity and Deep Learning through Combining Pearson Correlation Coefficient and Phase-Locking Value. Neuroinformatics. 2024 Oct 18. doi: 10.1007/s12021-024-09685-3
  39. Abedinzadeh Torghabeh F, Modaresnia Y, Hosseini SA. EEG-Based Effective Connectivity Analysis for Attention Deficit Hyperactivity Disorder Detection Using Color-Coded Granger-Causality Images and Custom Convolutional Neural Network. International Clinical Neuroscience Journal. 2023;10(November):e12. doi: 10.34172/icnj.2023.12
  40. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. 2018.
  41. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In: CVPR. 2018.
  42. Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions. 2017.
  43. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2015.
  44. Ding P, Qian H, Zhou Y, Yan S, Feng S, Yu S. Real-time efficient semantic segmentation network based on improved ASPP and parallel fusion module in complex scenes. J Real Time Image Process. 2023 Jun 6;20(3):41.
  45. Lian X, Pang Y, Han J, Pan J. Cascaded hierarchical atrous spatial pyramid pooling module for semantic segmentation. Pattern Recognit. 2021 Feb;110:107622.
  46. Memon MM, Hashmani MA, Junejo AZ, Rizvi SS, Raza K. Unified DeepLabV3+ for Semi-Dark Image Semantic Segmentation. Sensors. 2022 Jul 15;22(14):5312.
  47. Eker AG, Pehlivanoğlu MK, İnce İ, Duru N. Deep Learning and Transfer Learning Based Brain Tumor Segmentation. In: 2023 8th International Conference on Computer Science and Engineering (UBMK). IEEE; 2023. p. 163– doi: 10.1109/UBMK59864.2023.10286591
  48. Sobhaninia Z, Rezaei S, Noroozi A, Ahmadi M, Zarrabi H, Karimi N, et al. Brain Tumor Segmentation Using Deep Learning by Type Specific Sorting of Images [Internet]. 2018. Available from: http://arxiv.org/abs/1809.07786
  49. Badža MM, Barjaktarović MČ. Segmentation of Brain Tumors from MRI Images Using Convolutional Autoencoder. Applied Sciences. 2021 May 10;11(9):4317. doi: 10.3390/app11094317
  50. Rehman A, Naz S, Naseem U, Razzak I, Hameed IA. Deep AutoEncoder-Decoder Framework for Semantic Segmentation of Brain Tumor. Australian Journal of Intelligent Information Processing Systems. 2019;15(4):54–
  51. Gunasekara SR, Kaldera HNTK, Dissanayake MB. A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring. Yao Y h., editor. J Healthc Eng. 2021 Feb 28;2021:1– doi: 10.1155/2021/6695108