A Machine Learning Approach for Differential Diagnosis of Vascular and Non-Vascular Intracranial Hemorrhage in Non-Contrast CT Images

Document Type : Original Paper

Authors

1 Department of medical physics, Faulty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

2 Department of Radiology, Faculty of Medicine, Mashhad University of Medical sciences, Mashhad, Iran

3 Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

4 Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

5 Department of medical physics, Faulty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran

10.22038/ijmp.2025.79158.2400

Abstract

Introduction: Accurate diagnosis of acute Intracranial Hemorrhage (ICH) involving vascular and non-vascular bleeding has proven to be challenging due to the visual complexities in non-contrast Computed Tomography images (NCCT). Consequently, there has been a necessity for the adoption of novel techniques to address this issue, recently. This study aims to develop a new framework for automatic and accurate diagnosis of ICH and the ability of machine learning to differentiate vascular and non-vascular causes of Intracranial hemorrhages based on CT scan images without contrast material. Determining whether intracranial hemorrhage is vascular or non-vascular is clinically significant as it influences treatment decisions.
Material and Methods: In this retrospective study, NCCT images were gathered from a group of 370 patients, comprising 67 subjects with vascular bleeding and 303 with non-vascular bleeding. Radiomics features encompassing morphological, texture, and intensity-related characteristics, were extracted for every image slice. Subsequently, the effectiveness of five classification methods—namely, Support Vector Classifier (SVC), Logistic Regression (LR), Random Forest (RF), Decision Tree (DT) and K-Nearest Neighbors (KNN) was evaluated.
Results: Metrics for evaluating classification methods, sensitivity, specificity and accuracy for the Logistic Regression were 55%, 65% and 63%, respectively. The AUC-ROC in this model was 0.66, which is better than other methods with large margin.
Conclusion: In this study, an evaluation of five different classification methods revealed that all of them exhibited sufficient level of specificity. However, when it comes to classification sensitivity and accuracy, the Logistic Regression approach outperformed the others.

Keywords

Main Subjects


  1. Feigin VL. Stroke in developing countries: can the epidemic be stopped and outcomes improved? Lancet Neurol. 2007 Feb;6(2):94-7. doi: 10.1016/S1474-4422(07)70007-8.
  2. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009 Apr;8(4):355-69. doi: 10.1016/S1474-4422(09)70025-0.
  3. Garg R, Biller J. Recent advances in spontaneous intracerebral hemorrhage. F1000Res. 2019 Mar 18;8:F1000 Faculty Rev-302. doi: 10.12688/f1000research.16357.1.
  4. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008 May 10;371(9624):1612-23. doi: 10.1016/S0140-6736(08)60694-7.
  5. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010 Feb;9(2):167-76. doi: 10.1016/S1474-4422(09)70340-0.
  6. O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010 Jul 10;376(9735):112-23. doi: 10.1016/S0140-6736(10)60834-3.
  7. Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol. 2011 Dec;70(6):871-80. doi: 10.1002/ana.22516.
  8. Andersen KK, Olsen TS, Dehlendorff C, Kammersgaard LP. Hemorrhagic and ischemic strokes compared: stroke severity, mortality, and risk factors. Stroke. 2009 Jun;40(6):2068-72. doi: 10.1161/STROKEAHA.108.540112.
  9. Zhang Y, Tuomilehto J, Jousilahti P, Wang Y, Antikainen R, Hu G. Lifestyle factors on the risks of ischemic and hemorrhagic stroke. Arch Intern Med. 2011 Nov 14;171(20):1811-8. doi: 10.1001/archinternmed.2011.443.
  10. Wieberdink RG, Poels MM, Vernooij MW, Koudstaal PJ, Hofman A, van der Lugt A, et al. Serum lipid levels and the risk of intracerebral hemorrhage: the Rotterdam Study. Arterioscler Thromb Vasc Biol. 2011 Dec;31(12):2982-9. doi: 10.1161/ATVBAHA.111.234948.
  11. Emerging Risk Factors Collaboration; Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010 Jun 26;375(9733):2215-22. doi: 10.1016/S0140-6736(10)60484-9. Erratum in: Lancet. 2010 Sep 18;376(9745):958. Hillage, H L [corrected to Hillege, H L]. PMID: 20609967; PMCID: PMC2904878.
  12. Rost NS, Greenberg SM, Rosand J. The genetic architecture of intracerebral hemorrhage. Stroke. 2008 Jul;39(7):2166-73. doi: 10.1161/STROKEAHA.107.501650. Epub 2008 May 8. PMID: 18467649.
  13. Vanent KN, Leasure AC, Acosta JN, Kuohn LR, Woo D, Murthy SB, Kamel H, Messé SR, Mullen MT, Cohen JB, Cohen DL, Townsend RR, Petersen NH, Sansing LH, Gill TM, Sheth KN, Falcone GJ. Association of Chronic Kidney Disease With Risk of Intracerebral Hemorrhage. JAMA Neurol. 2022 Sep 1;79(9):911-918. doi: 10.1001/jamaneurol.2022.2299. PMID: 35969388; PMCID: PMC9379821.
  14. Lee M, Saver JL, Chang KH, Liao HW, Chang SC, Ovbiagele B. Impact of microalbuminuria on incident stroke: a meta-analysis. Stroke. 2010 Nov;41(11):2625-31. doi: 10.1161/STROKEAHA.110.581215. Epub 2010 Oct 7. PMID: 20930164.
  15. Sheth KN. Spontaneous Intracerebral Hemorrhage. N Engl J Med. 2022 Oct 27;387(17):1589-1596. doi: 10.1056/NEJMra2201449. Erratum in: N Engl J Med. 2023 Apr 13;388(15):1440. PMID: 36300975.
  16. Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN, Macdonald RL, Mitchell PH, Scott PA, Selim MH, Woo D; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2015 Jul;46(7):2032-60. doi: 10.1161/STR.0000000000000069. Epub 2015 May 28. PMID: 26022637.
  17. Macellari F, Paciaroni M, Agnelli G, Caso V. Neuroimaging in intracerebral hemorrhage. Stroke. 2014 Mar;45(3):903-8. doi: 10.1161/STROKEAHA.113.003701. Epub 2014 Jan 14. PMID: 24425128.
  18. Morotti A, Goldstein JN. Diagnosis and Management of Acute Intracerebral Hemorrhage. Emerg Med Clin North Am. 2016 Nov;34(4):883-899. doi: 10.1016/j.emc.2016.06.010. Epub 2016 Sep 3. PMID: 27741993; PMCID: PMC5089075.
  19. Strub WM, Leach JL, Tomsick T, Vagal A. Overnight preliminary head CT interpretations provided by residents: locations of misidentified intracranial hemorrhage. AJNR Am J Neuroradiol. 2007 Oct;28(9):1679-82. doi: 10.3174/ajnr.A0653. Epub 2007 Sep 20. PMID: 17885236; PMCID: PMC8134182.
  20. Chan KT, Carroll T, Linnau KF, Lehnert B. Expectations Among Academic Clinicians of Inpatient Imaging Turnaround Time: Does it Correlate with Satisfaction? Acad Radiol. 2015 Nov;22(11):1449-56. doi: 10.1016/j.acra.2015.06.019. Epub 2015 Aug 24. PMID: 26310727.
  21. Ioffe S. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. 2015.
  22. Zhang J, Chen L. Breast Cancer Diagnosis from Perspective of Class Imbalance. Iranian Journal of Medical Physics, 2019; 16(3): 241-249. doi: 10.22038/ijmp.2018.31600.1373.
  23. Jajroudi M, Enferadi M, Bagherpour Z, Reiazi R. Association Rule Mining-Based Radiomics in Breast Cancer Diagnosis. Iranian Journal of Medical Physics, 2024; 21(2): 113-120. doi: 10.22038/ijmp.2023.66728.2147.
  24. Chockley K, Emanuel E. The End of Radiology? Three Threats to the Future Practice of Radiology. J Am Coll Radiol. 2016 Dec;13(12 Pt A):1415-1420. doi: 10.1016/j.jacr.2016.07.010.
  25. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
  26. Steiner T, Rosand J, Diringer M. Intracerebral hemorrhage associated with oral anticoagulant therapy: current practices and unresolved questions. Stroke. 2006 Jan;37(1):256-62. doi: 10.1161/01.STR.0000196989.09900.f8.
  27. Shinohara Y, Takahashi N, Lee Y, Ohmura T, Kinoshita T. Development of a deep learning model to identify hyperdense MCA sign in patients with acute ischemic stroke. Jpn J Radiol. 2020 Feb;38(2):112-117. doi: 10.1007/s11604-019-00894-4.
  28. Sage A, Badura P. Intracranial hemorrhage detection in head CT using double-branch convolutional neural network, support vector machine, and random forest. Applied Sciences. 2020 Oct 27;10(21):7577.
  29. Alfaer NM, Aljohani HM, Abdel-Khalek S, Alghamdi AS, Mansour RF. Fusion-Based Deep Learning with Nature-Inspired Algorithm for Intracerebral Haemorrhage Diagnosis. J Healthc Eng. 2022 Jan 18;2022:4409336. doi: 10.1155/2022/4409336.
  30. Nafees Ahmed S, Prakasam P. A systematic review on intracranial aneurysm and hemorrhage detection using machine learning and deep learning techniques. Prog Biophys Mol Biol. 2023 Oct;183:1-16. doi: 10.1016/j.pbiomolbio.2023.07.001.
  31. Maghami M, Sattari SA, Tahmasbi M, Panahi P, Mozafari J, Shirbandi K. Diagnostic test accuracy of machine learning algorithms for the detection intracranial hemorrhage: a systematic review and meta-analysis study. Biomed Eng Online. 2023 Dec 4;22(1):114. doi: 10.1186/s12938-023-01172-1.
  32. Wang X, Shen T, Yang S, Lan J, Xu Y, Wang M, et al. A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans. Neuroimage Clin. 2021;32:102785. doi: 10.1016/j.nicl.2021.102785.
  33. Altuve M, Pérez A. Intracerebral hemorrhage detection on computed tomography images using a residual neural network. Phys Med. 2022 Jul;99:113-119. doi: 10.1016/j.ejmp.2022.05.015.
  34. Cearns M, Hahn T, Baune BT. Recommendations and future directions for supervised machine learning in psychiatry. Transl Psychiatry. 2019 Oct 22;9(1):271. doi: 10.1038/s41398-019-0607-2.
  35. Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol. 2005 Apr;3(2):185-205. doi: 10.1142/s0219720005001004.
  36. Radovic M, Ghalwash M, Filipovic N, Obradovic Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics. 2017 Jan 3;18(1):9. doi: 10.1186/s12859-016-1423-9.
  37. Kohavi R, John GH. Wrappers for feature subset selection. Artificial intelligence. 1997 Dec 1;97(1-2):273-324.
  38. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine learning. 2002 Jan;46:389-422.
  39. Hatt M, Krizsan AK, Rahmim A, Bradshaw TJ, Costa PF, Forgacs A, et al. Joint EANM/SNMMI guideline on radiomics in nuclear medicine: Jointly supported by the EANM Physics Committee and the SNMMI Physics, Instrumentation and Data Sciences Council. European Journal of Nuclear Medicine and Molecular Imaging. 2023 Jan;50(2):352-75.
  40. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research. 2002 Jun 1;16:321-57.
  41. Bekkar M, Djemaa HK, Alitouche TA. Evaluation measures for models assessment over imbalanced data sets. J Inf Eng Appl. 2013 Apr;3(10).
  42. Schmitt N, Mokli Y, Weyland CS, Gerry S, Herweh C, Ringleb PA, et al. Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients. European Radiology. 2022 Apr 1:1-9.
  43. Hopkins BS, Murthy NK, Texakalidis P, Karras CL, Mansell M, Jahromi BS, Potts MB, Dahdaleh NS. Mass deployment of deep neural network: real-time proof of concept with screening of intracranial hemorrhage using an open data set. Neurosurgery. 2022 Apr 8;90(4):383-9.
  44. Seyam M, Weikert T, Sauter A, Brehm A, Psychogios MN, Blackham KA. Utilization of artificial intelligence–based intracranial hemorrhage detection on emergent noncontrast CT images in clinical workflow. Radiology: Artificial Intelligence. 2022 Feb 9;4(2):e210168.
  45. Altuve M, Pérez A. Intracerebral hemorrhage detection on computed tomography images using a residual neural network. Physica Medica. 2022 Jul 1;99:113-9.
  46. Tang Z, Zhu Y, Lu X, Wu D, Fan X, Shen J, et al. Deep learning-based prediction of hematoma expansion using a single brain computed tomographic slice in patients with spontaneous intracerebral hemorrhages. World Neurosurgery. 2022 Sep 1;165:e128-36.
  47. Cortés-Ferre L, Gutiérrez-Naranjo MA, Egea-Guerrero JJ, Pérez-Sánchez S, Balcerzyk M. Deep Learning Applied to Intracranial Hemorrhage Detection. Journal of Imaging. 2023 Feb 7;9(2):37.
  48. Kau T, Ziurlys M, Taschwer M, Kloss-Brandstätter A, Grabner G, Deutschmann H. FDA-approved deep learning software application versus radiologists with different levels of expertise: detection of intracranial hemorrhage in a retrospective single-center study. Neuroradiology. 2022 May 1:1-0.
  49. Tharek A, Muda AS, Hudi AB, Hudin AB. Intracranial hemorrhage detection in ct scan using deep learning. Asian Journal of Medical Technology. 2022 Jan 31;2(1):1-8.
  50. Rao BN, Mohanty S, Sen K, Acharya UR, Cheong KH, Sabut S. Deep Transfer Learning for Automatic Prediction of Hemorrhagic Stroke on CT Images. Computational and Mathematical Methods in Medicine. 2022 Apr 16;2022.
  51. Voter AF, Larson ME, Garrett JW, Yu JP. Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of cervical spine fractures. American Journal of Neuroradiology. 2021 Aug 1;42(8):1550-6.
  52. Kuo W, Hӓne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proceedings of the National Academy of Sciences. 2019 Nov 5;116(45):22737-45.
  53. Abe D, Inaji M, Hase T, Takahashi S, Sakai R, Ayabe F, et al. A prehospital triage system to detect traumatic intracranial hemorrhage using machine learning algorithms. JAMA Network Open. 2022 Jun 1;5(6):e2216393-.
  54. Trevisi G, Caccavella VM, Scerrati A, Signorelli F, Salamone GG, Orsini K, et al. Machine learning model prediction of 6-month functional outcome in elderly patients with intracerebral hemorrhage. Neurosurgical Review. 2022 Aug;45(4):2857-67.
  55. Uchida K, Kouno J, Yoshimura S, Kinjo N, Sakakibara F, Araki H, et al. Development of machine learning models to predict probabilities and types of stroke at prehospital stage: The Japan urgent stroke triage score using machine learning (JUST-ML). Translational Stroke Research. 2022 Jun 1:1-2.