Comparing the Influence of Different-Order HIFU Harmonic Superposition on Focal Temperature of Biological Tissue

Document Type : Original Paper

Authors

1 School of Information Science and Engineering, Changsha Normal University, Changsha 410100, China

2 School of Information Science and Engineering, Xinyu University, Xinyu, 338004, China

10.22038/ijmp.2025.86253.2514

Abstract

Introduction: While high-intensity focused ultrasound (HIFU) is widely used for non-invasive tumor ablation, current models fail to account for the cumulative energy contributions of nonlinear harmonics (up to the 256th order), significantly limiting treatment precision. This study quantifies the role of harmonic superposition (1st+2nd+…+256th order) in regulating HIFU-induced focal temperature and establishes an optimized harmonic combination to enhance clinical parameter design.   
Material and Methods: A coupled acousto-thermal model, validated against MRI thermometry, was developed by solving the Westervelt equation and Pennes bioheat equation to simulate nonlinear acoustic propagation and transient temperature fields in ex vivo porcine muscle under HIFU irradiation. 
Results: The 1st+2nd+...+128th harmonic superposition model achieved <2.2% error in focal temperature prediction across all tested power levels (80–200 W), with errors of 1.6% at 80 W (48.18 °C simulated vs. 47.96 °C measured), 1.1% at 140 W (66.0 °C vs. 65.31 °C), 1.8% at 160 W (77.78 °C vs. 76.38 °C), and 2.2% at 200 W (82.25 °C vs. 84.11 °C). Mid-order harmonics (2nd–64th) contributed 75–80% of energy deposition, while high-order harmonics (>128th, e.g., 256th at 276.48 MHz) exhibited severe attenuation (135× higher than the fundamental wave). The linear propagation model (fundamental frequency only) underestimated temperatures by 4.8-23.9%, highlighting the necessity of nonlinear harmonic inclusion. 
Conclusion: This work establishes a harmonically optimized framework for HIFU treatment planning, addressing a critical gap in nonlinear acoustic modeling and enabling safer, precision thermal therapy.

Keywords

Main Subjects


  1. Wessapan T, Keangin P, Rattanadecho P, Somsuk N. Comparative analysis of heat transfer dynamics in high-intensity focused ultrasound and microwave ablation for cancer treatment. International Journal of Thermofluids. 2025 Mar 1;26:101090. doi:10.1016/j.ijft.2025.101090.
  2. Rohfritsch A, Barrere V, Estienne L, Melodelima D. 2D ultrasound thermometry during thermal ablation with high-intensity focused ultrasound. Ultrasonics. 2024 Aug 1;142:107372.
  3. Cambronero S, Dupré A, Mastier C, Chen Y, Hamelin O, Melodelima D. Intraoperative HIFU ablation of the liver at the hepatocaval confluence as adjunct to surgery: Preliminary animal experiments. Ultrasonics. 2025 Apr 1;148:107556.
  4. Guntur SR, Choi M. Influence of temperature-dependent thermal parameters on temperature elevation of tissue exposed to high-intensity focused ultrasound: numerical simulation. Ultrasound Med Biol. 2015;41(3):806-13. doi:10.1016/j.ultrasmedbio.2014.10.008.
  5. Wang M, Zhou Y. Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU). Int J Hyperthermia. 2016;32(5):569-82. doi:10.3109/02656736.2016.1160154.
  6. Tan Q, Zou X, Ding Y, Zhao X, Qian S. The influence of dynamic tissue properties on HIFU hyperthermia: A numerical simulation study. Applied Sciences. 2018 Oct 16;8(10):1933. doi:10.3390/app8101933.
  7. Wang M, Lei Y, Zhou Y. High-intensity focused ultrasound (HIFU) ablation by the frequency chirps: Enhanced thermal field and cavitation at the focus. Ultrasonics. 2019;91:134-49. doi:10.1016/j.ultras.2018.08.017.
  8. Zou X, Dong H, Qian SY. Influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy: Numerical simulation. Chin Phys B. 2020;29(3):034305. doi:10.1088/1674-1056/29/3/034305.
  9. Takagi R, Yoshinaka K, Washio T, Koseki Y. A visualization method for a wide range of rising temperature induced by high-intensity focused ultrasound using a tissue-mimicking phantom. International Journal of Hyperthermia. 2022 Dec 31;39(1):22-33. doi:10.1080/02656836.2021.1942324.
  10. Li C, Chen S, Wang Q, Li H, Xiao S, Li F. Effects of thermal relaxation on temperature elevation in ex vivo tissues during high intensity focused ultrasound. IEEE Access. 2020 Nov 24;8:212013-21. doi:10.1109/ACCESS.2020.3028991.
  11. Dong H, Liu G, Peng G. Numerical simulation of the effect of temperature-dependent acoustic and thermal parameters on the focal temperature and thermal lesion of biological tissue irradiated by HIFU. Iran J Med Phys. 2023;20(5):257-65. doi:10.22038/IJMP.2022.65642.2126.
  12. Luan S, Ji Y, Liu Y, Zhu L, Zhou H, Ouyang J, Yang X, Zhao H, Zhu B. Real-time reconstruction of HIFU focal temperature field based on deep learning. BME frontiers. 2024 Mar 21;5:0037. doi:10.1007/s43317-024-0037-5.
  13. Xu P, Wu H, Shen G. Characterization of weakly nonlinear effects in relationship to transducer parameters in focused ultrasound therapy. Med Phys. 2024;51(10):7619-31. doi:10.1002/mp.12723.
  14. Zheng Y, Maev RG, Solodov IY. Nonlinear acoustic applications for material characterization: a review. Can J Phys. 2000;77(12):927-67. doi:10.1139/cjp-77-12-927.
  15. Varray F, Ramalli A, Cachard C, Tortoli P, Basset O. Fundamental and second-harmonic ultrasound field computation of inhomogeneous nonlinear medium with a generalized angular spectrum method. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2011 Jul 14;58(7):1366-76. doi:10.1109/TUFFC.2011.1879.
  16. Roohi R, Baroumand S, Hosseinie R, Ahmadi G. Numerical simulation of HIFU with dual transducers: The implementation of dual-phase lag bioheat and non-linear Westervelt equations. International Communications in Heat and Mass Transfer. 2021 Jan 1;120:105002. doi:10.1016/j.icheatmasstransfer.2020.105002.
  17. Zhao P, Wang Y, Tong S, Tao J, Sheng Y. The Effects of Energy on the Relationship between the Acoustic Focal Region and Biological Focal Region during Low-Power Cumulative HIFU Ablation. Applied Sciences. 2023 Apr 1;13(7):4492. doi:10.3390/app1374492.
  18. Qi M, Liu J, Mao Y, Liu X. Temperature rise induced by an annular focused transducer with a wide aperture angle in multi-layer tissue. Chinese Physics B. 2018;27(1):014301. doi:10.1088/1674-1056/27/1/014301.
  19. Mortazavi S, Mokhtari‐Dizaji M. Numerical study of high‐intensity focused ultrasound (HIFU) in fat reduction. Skin Research and Technology. 2023 Jan;29(1):e13280. doi:10.1111/srt.13280.
  20. Dong H, Liu G, Tong X. Influence of temperature-dependent acoustic and thermal parameters and nonlinear harmonics on the prediction of thermal lesion under HIFU ablation. Math. Biosci. Eng. 2021 Jan 1;18:1340-51. doi:10.3934/mbe.2021238.
  21. Solovchuk MA, Hwang SC, Chang H, Thiriet M, Sheu TW. Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study. Medical physics. 2014 May;41(5):052903. doi:10.1118/1.4869822.
  22. Aubry JF, Bates O, Boehm C, Butts Pauly K, Christensen D, Cueto C, et al. Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models. The Journal of the Acoustical Society of America. 2022 Aug 1;152(2):1003-19. doi:10.1121/10.0013426.
  23. Kinsey AM, Diederich CJ, Rieke V, Nau WH, Pauly KB, Bouley D, et al. Transurethral ultrasound applicators with dynamic multi‐sector control for prostate thermal therapy: in vivo evaluation under MR guidance. Medical physics. 2008 May;35(5):2081-93. doi:10.1118/1.2900131.
  24. Bernard S, Kazemirad S, Cloutier G. A frequency-shift method to measure shear-wave attenuation in soft tissues. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;64(3):514-24. doi:10.1109/TUFFC.2016.2541.
  25. Wei C, Zhang H, Fan H, Wang P, Peng D, Liu Y. Resolving high-frequency aeroacoustic noises of high-speed dual-impinging jets using fast pressure-sensitive paint. Experiments in Fluids. 2024 Sep;65(9):131. doi:10.1007/s00348-024-03336-5.
  26. Karlinsky KT, Ilovitsh T. Ultrasound frequency mixing for enhanced contrast harmonic imaging of microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(8):2414-24. doi:10.1109/TUFFC.2022.3174.
  27. Mortazavi S, Mokhtari-Dizaji M. Threshold of linear and non-linear behavior of high intensity focused ultrasound (HIFU) in skin, fat, and muscle tissue using computer simulation. Iran J Med Phys. 2022;19:181-8. doi:10.22038/IJMP.2021.59077.1992.
  28. Hussain M, Kaassamani S, Auguste T, Boutu W, Gauthier D, Kholodtsova M, et al. Spectral control of high order harmonics through non-linear propagation effects. Applied Physics Letters. 2021 Aug 16;119(7). doi:10.1063/5.1211.
  29. Gnawali S, Ghimire R, Magar KR, Hossaini SJ, Apalkov V. Ultrafast electron dynamics of graphene quantum dots: High harmonic generation. Physical Review B. 2022 Aug 15;106(7):075149. doi:10.1103/PhysRevB.106.075149.