Determination of Optimum Planar Imaging Parameters for Small Structures with Diameters Less Than the Resolution of the Gamma Camera

Document Type : Original Paper

Author

Department of Medical Physics Sefako Makgatho Health Sciences University SouthAfrica

Abstract

Introduction: The limited spatial resolution of the gamma camera hinders the absolute quantification of planar images of small structures. The imaged structures are affected by partial volume effects (PVEs), which can spread activity and lead to underestimation of the regional distribution.  The use of optimum planar parameters reduces the impact of the limited spatial resolution of the gamma camera and the statistical noise inherent to low photon count, thus improving quantification. In this study, we aimed to determine the optimum planar imaging parameters for small structures.
Materials and Methods: A thyroid protocol was used to acquire planar images of the spheres A, B, and C (16 mm, 12 mm, and 11 mm in diameter, respectively) whilst filled with a targeted activity concentration of technetium-99m. One sphere was mounted at the centre of the Jaszczak Phantom and the other two adjacent to its walls using capillary stems fitted on the spheres. The phantom was filled with distilled water. The targeted activity concentrations used were 74 kBq/mL, 100 kBq/mL, 150 kBq/mL, and 300 kBq/mL. Images of the same count per pixel were acquired on 64  64, 128  128, 256  256, 512  512, and 1024  1024 pixels using a vertical detector mounted 5 cm above the phantom. All the images were quantified using ImageJ software, version 1.48a, Java 1.70_51 [64-bit].
Results: The optimum planar imaging parameters established were a matrix size of 128 128 pixels and technetium-99m solution of activity concentration of 300 kBq/ml.
Conclusion: The use of optimal imaging parameters reduces the impact of PVEs, leading to improved quantitative accuracy.

Keywords

Main Subjects


  1. Dugonjić S, Stefanović D, Đurović B, Spasić-Jokić V, Ajdinović1 B. MD. Evaluation of diagnostic parameters from parotid and submandibular dynamic salivary glands scintigraphy and unstimulated sialometry in Sjögren’s syndrome. Hell J Nucl Med 2014; 17(2): 116-22.
  2. Konstantinidis I, Tsakiropoulou E, Chatziavramidis A, Iakovou I. Scintigraphic detection of a parotid salivary gland malfunction, in chronic sialolithiasis and fat infiltration with no risk factors. Hell J Nucl Med 2014; 17(1): 49-51.
  3. IAEA. Quantitative nuclear medicine imaging concepts, requirements and methods. Report 9. 2014; 79 pages.
  4. Buvat I. Quantification in emission tomography: challenges, solution, and performance. Nucl Instr Meth Phys Res. 2007; 10-3.
  5. Bushberg JT, Seibert JA, Leidholdt EM, Boone JM. The Essentials of Medical Physics Imaging. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2012.
  6. Wernick MN, Aarsvold JN. Emission Tomography, The fundamentals of Pet and Spect Imaging. Oxford: Elsevier Academic Press; 2004.
  7. Powsner RA, Powsner ER. Essential Nuclear Medicine Physics. Oxford: Blackwell Publishing Ltd; 2006.
  8. Rabillota CC. Emission Tomography: SPECT and PET. Computations y Sistemas. 2004; 7(3): 167-74.
  9. Sydoff M. Quantification methods for clinical studies in nuclear medicine. Lund University. 2013; 22-50.
  10. Mittra ES, Goris ML, Iagaru AH, Kardan A, Burton L, Berganos R, et al. Pilot pharmacokinetic and dosimetric studies of (18)F-FPPRGD2: a PET radiopharmaceutical agent for imaging α(v)β(3) integrin levels. Radiology. 2011; 260:182–91.
  11. Loutfi I, Nair MK, Ebrahim AK. Salivary Gland Scintigraphy: The Use of Semi quantitative Analysis for Uptake and Clearance. Nucl Med Technol. 2003; 31:81-5.
  12.  Klutmann S, Bohuslavizki, Kroger, Bleckmann C,Bremer W,Mester J, Clausen M. Quantitative Salivary Gland Scintigraphy. J Nucl Technol. 1999; 27:20-6.
  13. Preethi BLG, Ulla I, Bhaskar V, Suresh KP, Naveen T. Assessment of parotid salivary gland function in head and neck tumours receiving radiation therapy of head and neck cancer patients receiving radiation therapy using quantitative salivary gland scintigraphy. Pak J Physiol. 2011;7:1.
  14. Orsal E, Seven B, Keles, A, Canyaka E, Ozkan O. Assessment of salivary gland function in patients after successful kidney transplantation using 99mTc- pertechnetate salivary gland scintigraphy. Hell J Nucl. 2013; 16:107-10.
  15. Bushberg JT, Seirbert JA, Leidholdt EM, Boone JM. The Essential Physics of Medical Imaging. Baltimore, Maryland: Williams and Wilkins; 2002.
  16. Karpetas GE, Michail CM, Fountos G et al. A new PET resolution measurement method through Monte Carlo simulations. Nucl Med Com. 2014; 35(9):967-76.
  17. Fountos G P, Michail C M, Zanglis A et al. A novel easy-to-use phantom for the determination of MTF in SPECT scanners. Med Phys. 2012; 39(3):1561-70.
  18. Elarndson K, Thomas B, Dickson Hutton BF. Partial Volume correction in SPECT reconstruction with OSEM. Nucl Instrum Methods. 2011; 646:S85-S8.
  19. Frey EC, Humm JL, Ljungberg M. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images. Semin Nucl Med. 2012;42(3):208-18.
  20. Miguel A. Zisserman AP, Brady M. Estimation of the partial volume effect in MRI. Med Image Anal. 2002; 6:389-405.
  21. Elanderson K, Buvat I, Pretorious PH, Thomas AB Hutton BF. A review of partial volume correction techniques for emission tomography neurology, cardiology and oncology and their applications. Phys Med Biol. 2012; 57: R119-R59.
  22. Buvat I. Partial volume effect issue: Instrumental and biological components. Taormina workshop. 2012; Aug 31; Orsay, France.
  23. Rousset OG, Ma Y, Evans AC. Correction of Partial Volume effect in PET: Principle and Validation. J Nucl Med. 1998; 39: 904-11.
  24. Erlandsson K, Hutton BF. Partial Volume Correction in SPECT Using Anatomical Information and Iterative FBP. Tsinghua Sci Technol. 2010; 15:50-5.
  25. Fakhri GEL, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative Impact of Scatter, Collimator Response, Attenuation, and Finite Spatial Resolution Corrections in Cardiac SPECT. J Nucl Med. 2000; 41:1400-8.
  26. Yang J. Huang S, Mega M. Investigating partial Volume Correction Methods for Brain FDG PET studies. IEEE Trans Nucl Sci. 1996; 43:3322-7.
  27. Melter CC, Leal JP, Mayberg HS. Correction of PET data for Partial Volume effects on Human Celebrex by MR imaging. J. Compt Asst Tomogr. 1990; 12: 561-70.
  28. Teo BK, Seo Y, Bacharach SL, Carrasquillo JA, Libutti SK, Shukla H, Hasegawa BH, Hawkins RA, Franc BL. Partial Volume correction in PET: Validation of an Iterative Post reconstruction Method with Phantom and Patient Studies. J Nucl Med. 2007; 48: 802-10.
  29. Pretorious PH, Kings MA, Pan TS, de Vriest DJ, Dlick SJ, Byrne CL. Reducing the influence of partial volume effect on SPECT activity quantification with 3D modelling of spatial resolution in iterative reconstruction. Phys Med Biol. 1998; 43:407-20.
  30. Nyathi M, Sithole ME, O Ramafi. Quantification of partial volumes effects in planar imaging. Iran J Nucl Med. 2016; 24(2):115-20.
  31. Ritt P, Vija H, Hornegger J, Kuwert T. Absolute quantification in SPECT. Eur J Nucl Mol Imaging. 2011; 38: S69-S77.
  32. Rousset O, Rahmim A, Alavi A, Zaidi H. Partial Volume Correction Strategies in PET Clin. 2007; 2: 235-49.
  33. Frouin V, Comtat C, Reilhac A, Gregoire MC. Partial Volume Effect for PET Straital Imaging: Fast Implementation and Study of Robustness. J Nucl Med. 2006; 43:1715-26.
  34. Soret M, Bacharach SL, Buvat I. Partial Volume Effect in PET Tumour Imaging. J Nucl Med. 2007; 48:932-45.
  35. Soret M, Alaoui J, Koulbaly PM, Darcourt J, Buvat I. Accuracy of partial volume correction in clinical molecular imaging of dopamine transporter using SPECT. Nucl Instrum Methods. 571; A571:173-6.
  36. Law I, Iida H, Holm S, Nour S, Rostrup E, Svarer C, Paulson OB. Quantification of Regional Cerebral Blood and Flow Corrected for Partial Volume Effect Using O-15 Water and Pet: II. Normal Values and Gray Matter Blood Flow Response to Visual Activation. J Cereb Blood Flow. Metab. 2000; 20:1252-63.
  37. Pretorious PH, King MA. Diminishing the impact of partial Volume Effect in cardiac SPECT perfusion imaging. Med Phys. 2009; 36:105-15.
  38. Hoetjes N, van Velden FHP, Hoekstra OS, Hoekstra CJ, Krank NC, Lammertsma AAL, Boellard R. Partial Volume Correction Strategies for Quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging. 2010; 37:1679-87.
  39. Bencherif B, Stumpf M, Links JM, Frost JJ, Application for MRI-Based Partial Volume Correction to the Analysis of PET Images of µ-Opioid Receptors Using Statistical Parametric mapping. J Nucl Med. 2002; 45:402-8.
  40. ImageJ software, 1.48a; Java 1.70_51 [64-bit]. [Internet]. 2015 [cited 2015 May 10]. Available from: http://imagej.net/download.html
  41. Padhy AK, Groth S. The role of International Atomic Energy Agency in the promotion of nuclear medicine in developing countries. Hell J Nucl. 2001; 1:44-7.
  42. Michail CM, Karpetas GE, Fountos G P, et al. A novel method for the optimization of Positron Emission Tomography Scanners Imaging Performance. Hell J Nucl Med. 2016; 19(3):231-40.
  43. Karakatsanis NA, Fokou E, Tsoumpas C. Dose optimization in optimization in positron emission tomography: state-of-the-art methods and future prospects. Am J Nucl Med Mol Imaging. 2015; 5(5):527-47.
  44. Grammaticos P, Fountos G. The physician should benefit, not harm the patient. Hell J Nucl Med. 2006; 9(2):82-4.
  45. Liaros G, Nikolaou A, Karanto E, Daniilidis I. Contribution of Nuclear Medicine in Staging Patients with Nasopharynx and Larynx Carcinoma – A Study on 30 Patients. Hell J Nucl Med. 2000. 3: 135-8.
  46. Sedaghat F, Gerasimou G, BasdanI, Christodoulou I, Gamvros O, Grammaticos P, Katsohis K. The Importance of CEA Scan Radioimmuno scintigraphy in the Diagnosis of Recurrent Colorectal Cancer. Hell J Nucl Med. 2000; 3:168-70.
  47. Lyra M, Ploussi A. Filtering in SPECT Reconstruction. Int J Biomed Imaging. 2011:1-14.
  48. The Optimisation of Radiological Protection - Broadening the Process. ICRP Publication 101b. Ann. ICRP. 36 (3), 2006.